What is [tex] \cos 30^{\circ} [/tex]?

A. [tex] \frac{\sqrt{3}}{2} [/tex]
B. 1
C. [tex] \frac{1}{\sqrt{2}} [/tex]
D. [tex] \frac{1}{2} [/tex]
E. [tex] \frac{1}{\sqrt{3}} [/tex]
F. [tex] \sqrt{3} [/tex]



Answer :

To determine the value of [tex]\(\cos 30^{\circ}\)[/tex], let's consider the options provided and identify the one that correctly represents the value.

First, let's recall the exact value:

[tex]\[ \cos 30^{\circ} = \frac{\sqrt{3}}{2} \][/tex]

The options given are:
A. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
B. 1
C. [tex]\(\frac{1}{\sqrt{2}}\)[/tex]
D. [tex]\(\frac{1}{2}\)[/tex]
E. [tex]\(\frac{1}{\sqrt{3}}\)[/tex]
F. [tex]\(\sqrt{3}\)[/tex]

We match the value [tex]\(\cos 30^{\circ} = 0.8660254037844387\)[/tex] with the options provided. Noting that the decimal representation of [tex]\(\cos 30^{\circ}\)[/tex]:

[tex]\[ 0.8660254037844387 \][/tex]

is equivalent to the exact value:

[tex]\[ \frac{\sqrt{3}}{2} \][/tex]

Thus, the correct answer among the options is:

[tex]\[ \boxed{A. \frac{\sqrt{3}}{2}} \][/tex]