Answer :
To estimate the volume of the Great Pyramid of Giza in cubic meters, we need to use the formula for the volume of a pyramid, which is given by:
[tex]\[ V = \frac{A \cdot h}{3} \][/tex]
where:
- [tex]\( A \)[/tex] is the area of the pyramid's base,
- [tex]\( h \)[/tex] is the height of the pyramid,
- [tex]\( V \)[/tex] is the volume of the pyramid.
Given the following values:
- The base area [tex]\( A \)[/tex] is 53,000 square meters.
- The height [tex]\( h \)[/tex] is 150 meters.
We substitute these values into the formula.
[tex]\[ V = \frac{53,000 \; \text{m}^2 \cdot 150 \; \text{m}}{3} \][/tex]
First, multiply the base area by the height:
[tex]\[ 53,000 \; \text{m}^2 \times 150 \; \text{m} = 7,950,000 \; \text{m}^3 \][/tex]
Next, divide the result by 3 to account for the pyramid's shape:
[tex]\[ \frac{7,950,000 \; \text{m}^3}{3} = 2,650,000 \; \text{m}^3 \][/tex]
So, the estimated volume of the Great Pyramid of Giza is:
[tex]\[ 2,650,000 \; \text{cubic meters} \][/tex]
[tex]\[ V = \frac{A \cdot h}{3} \][/tex]
where:
- [tex]\( A \)[/tex] is the area of the pyramid's base,
- [tex]\( h \)[/tex] is the height of the pyramid,
- [tex]\( V \)[/tex] is the volume of the pyramid.
Given the following values:
- The base area [tex]\( A \)[/tex] is 53,000 square meters.
- The height [tex]\( h \)[/tex] is 150 meters.
We substitute these values into the formula.
[tex]\[ V = \frac{53,000 \; \text{m}^2 \cdot 150 \; \text{m}}{3} \][/tex]
First, multiply the base area by the height:
[tex]\[ 53,000 \; \text{m}^2 \times 150 \; \text{m} = 7,950,000 \; \text{m}^3 \][/tex]
Next, divide the result by 3 to account for the pyramid's shape:
[tex]\[ \frac{7,950,000 \; \text{m}^3}{3} = 2,650,000 \; \text{m}^3 \][/tex]
So, the estimated volume of the Great Pyramid of Giza is:
[tex]\[ 2,650,000 \; \text{cubic meters} \][/tex]