Which choice is equivalent to the product below for acceptable values of [tex][tex]$x$[/tex][/tex]?

[tex]\sqrt{7 x} \cdot \sqrt{x+2}[/tex]

A. [tex]\sqrt{7 x^2 + 14 x}[/tex]
B. [tex]\sqrt{7 x^2 + 14}[/tex]
C. [tex]\sqrt{7 x^2 + x}[/tex]
D. [tex]\sqrt{7 x^2 + 7 x}[/tex]



Answer :

To determine the equivalent expression for the product [tex]\(\sqrt{7x} \cdot \sqrt{x+2}\)[/tex], we can make use of the property of square roots that states [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\)[/tex].

1. Start with the given product:
[tex]\[ \sqrt{7x} \cdot \sqrt{x+2} \][/tex]

2. Apply the property of square roots to combine the two square roots into one:
[tex]\[ \sqrt{7x} \cdot \sqrt{x+2} = \sqrt{(7x) \cdot (x+2)} \][/tex]

3. Distribute [tex]\(7x\)[/tex] inside the square root:
[tex]\[ \sqrt{7x \cdot (x+2)} = \sqrt{7x \cdot x + 7x \cdot 2} = \sqrt{7x^2 + 14x} \][/tex]

Thus, the expression [tex]\(\sqrt{7x} \cdot \sqrt{x+2}\)[/tex] is equivalent to [tex]\(\sqrt{7x^2 + 14x}\)[/tex].

Among the given choices, the correct answer is:

A. [tex]\(\sqrt{7 x^2 + 14 x}\)[/tex]