Determine if the statement is greater than ([tex]$\ \textgreater \ $[/tex]), less than ([tex]$\ \textless \ $[/tex]), or equal to ([tex]$=$[/tex]) 37.

[tex]\[ 37 - (-3)^2 \][/tex]



Answer :

To determine the comparison result for the expression [tex]\(0.37 - (-3)^2\)[/tex], let's break it down step by step:

1. Evaluate the exponentiation:
- Calculate [tex]\((-3)^2\)[/tex].
- [tex]\((-3)^2 = 9\)[/tex], since any negative number squared is positive.

2. Apply the result to the expression:
- Substitute the value from the exponentiation into the expression, so we get [tex]\(0.37 - 9\)[/tex].

3. Perform the subtraction:
- Subtract 9 from 0.37.
- [tex]\(0.37 - 9 = -8.63\)[/tex].

Now, we compare [tex]\(-8.63\)[/tex] with 0:

- Since [tex]\(-8.63\)[/tex] is less than 0, we have:
[tex]\[ 0.37 - (-3)^2 < 0 \][/tex]

Thus, the final answer is [tex]\(<\)[/tex].