What is the range of the function [tex]f(x) = |x| + 3[/tex]?

A. [tex]\{f(x) \in \mathbb{R} \mid f(x) \leq 3\}[/tex]
B. [tex]\{f(x) \in \mathbb{R} \mid f(x) \geq 3\}[/tex]
C. [tex]\{f(x) \in \mathbb{R} \mid f(x) \ \textgreater \ 3\}[/tex]
D. [tex]\{f(x) \in \mathbb{R} \mid f(x) \ \textless \ 3\}[/tex]



Answer :

To determine the range of the function [tex]\( f(x) = |x| + 3 \)[/tex], let's analyze the function step-by-step.

1. Understanding the Absolute Value Function:
- The absolute value function [tex]\( |x| \)[/tex] is always non-negative. This means that [tex]\( |x| \geq 0 \)[/tex] for all [tex]\( x \in R \)[/tex].

2. Evaluating the Function:
- Since [tex]\( f(x) = |x| + 3 \)[/tex], we add 3 to the non-negative value of [tex]\( |x| \)[/tex].
- Therefore, [tex]\( f(x) \)[/tex] will always be at least [tex]\( 3 \)[/tex], because the smallest value [tex]\( |x| \)[/tex] can take is [tex]\( 0 \)[/tex].

3. Identifying the Minimum Value:
- The minimum value of [tex]\( f(x) \)[/tex] occurs when [tex]\( x = 0 \)[/tex]. Substituting [tex]\( x = 0 \)[/tex] into the function, we get:
[tex]\[ f(0) = |0| + 3 = 0 + 3 = 3 \][/tex]

4. Determining the Range:
- Since the minimum value of [tex]\( f(x) \)[/tex] is [tex]\( 3 \)[/tex] and the function increases as [tex]\( |x| \)[/tex] increases, the function takes all values starting from [tex]\( 3 \)[/tex] and extending to positive infinity.
- In symbolic form, we can say that [tex]\( f(x) \geq 3 \)[/tex].

Thus, the range of [tex]\( f(x) = |x| + 3 \)[/tex] is correctly described by:
[tex]\[ \{f(x) \in R \mid f(x) \geq 3\} \][/tex]

Therefore, the correct answer is:
[tex]\[ \{f(x) \in R \mid f(x) \geq 3\} \][/tex]