Transform the following fractions into percentages:

\begin{tabular}{|l|l|}
\hline
Frações & Porcentagens \\
\hline
[tex]$\frac{3}{4}$[/tex] & \\
\hline
[tex]$\frac{7}{20}$[/tex] & \\
\hline
[tex]$\frac{13}{5}$[/tex] & \\
\hline
[tex]$\frac{1}{2}$[/tex] & \\
\hline
[tex]$\frac{9}{25}$[/tex] & \\
\hline
[tex]$\frac{21}{50}$[/tex] & \\
\hline
\end{tabular}



Answer :

Certainly! Let's convert each of the given fractions into percentages step-by-step.

### Fraction to Percentage Conversion

To convert a fraction to a percentage, you follow these steps:
1. Divide the numerator by the denominator to get a decimal.
2. Multiply the decimal by 100 to get the percentage.

### Conversion Steps

1. [tex]\(\frac{7}{20}\)[/tex]:
- Compute the decimal: [tex]\( \frac{7}{20} = 0.35 \)[/tex]
- Convert to percentage: [tex]\( 0.35 \times 100 = 35\% \)[/tex]

2. [tex]\(\frac{13}{5}\)[/tex]:
- Compute the decimal: [tex]\( \frac{13}{5} = 2.6 \)[/tex]
- Convert to percentage: [tex]\( 2.6 \times 100 = 260\% \)[/tex]

3. [tex]\(\frac{1}{2}\)[/tex]:
- Compute the decimal: [tex]\( \frac{1}{2} = 0.5 \)[/tex]
- Convert to percentage: [tex]\( 0.5 \times 100 = 50\% \)[/tex]

4. [tex]\(\frac{9}{25}\)[/tex]:
- Compute the decimal: [tex]\( \frac{9}{25} = 0.36 \)[/tex]
- Convert to percentage: [tex]\( 0.36 \times 100 = 36\% \)[/tex]

5. [tex]\(\frac{21}{50}\)[/tex]:
- Compute the decimal: [tex]\( \frac{21}{50} = 0.42 \)[/tex]
- Convert to percentage: [tex]\( 0.42 \times 100 = 42\% \)[/tex]

### Summary of Results

- [tex]\(\frac{7}{20} \rightarrow 35\%\)[/tex]
- [tex]\(\frac{13}{5} \rightarrow 260\%\)[/tex]
- [tex]\(\frac{1}{2} \rightarrow 50\%\)[/tex]
- [tex]\(\frac{9}{25} \rightarrow 36\%\)[/tex]
- [tex]\(\frac{21}{50} \rightarrow 42\%\)[/tex]

Thus, the fractions converted to percentages are: 35%, 260%, 50%, 36%, and 42%.