The provided text contains numerous errors and nonsensical fragments, making it challenging to decipher. I will attempt to extract and format any coherent mathematical content.

---
Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]

Evaluate the following expressions:
[tex]\[
\begin{array}{|c|c|c|}
\hline
\text{Series} & x & 8 - 3 & (x - n)^2 \\
\hline
\text{ms} & \times & \int = \\
\hline
124 & * & = \\
\hline
144 & x & \approx \\
\hline
16 & = & * \\
\hline
184 & 34 & \times \\
\hline
110 & x & * \\
\hline
12 & = & \\
\hline
14 & \approx & \pi \\
\hline
120 & x & \int = \\
\hline
106 & \int & = \\
\hline
2(e - n)^2 & & \\
\hline
\end{array}
\][/tex]

Other expressions:
[tex]\[ x^4 = \frac{E + 4}{-1} \][/tex]

[tex]\[ P + 18 \][/tex]

---



Answer :

Sure! Let's solve the equation [tex]\(4(18 - 3k) = 9(k + 1)\)[/tex] using algebraic methods step-by-step.

1. Distribute the constants inside the parentheses:
- For the left side: [tex]\(4(18 - 3k)\)[/tex]
- Distribute the 4: [tex]\(4 \cdot 18 - 4 \cdot 3k\)[/tex]
- This simplifies to: [tex]\(72 - 12k\)[/tex]
- For the right side: [tex]\(9(k + 1)\)[/tex]
- Distribute the 9: [tex]\(9 \cdot k + 9 \cdot 1\)[/tex]
- This simplifies to: [tex]\(9k + 9\)[/tex]

2. Set the simplified expressions equal to each other:
- [tex]\(72 - 12k = 9k + 9\)[/tex]

3. Combine like terms:
- Move all terms involving [tex]\(k\)[/tex] to one side and constants to the other side.
- Subtract [tex]\(9k\)[/tex] from both sides: [tex]\(72 - 12k - 9k = 9\)[/tex]
- This simplifies to: [tex]\(72 - 21k = 9\)[/tex]
- Next, isolate the term involving [tex]\(k\)[/tex]:
- Subtract 72 from both sides: [tex]\(-21k = 9 - 72\)[/tex]
- This simplifies to: [tex]\(-21k = -63\)[/tex]

4. Solve for [tex]\(k\)[/tex]:
- Divide both sides by -21 to solve for [tex]\(k\)[/tex]:
- [tex]\(k = \frac{-63}{-21}\)[/tex]
- Simplify the fraction:
- [tex]\(k = 3\)[/tex]

Therefore, the solution to the equation [tex]\(4(18 - 3k) = 9(k + 1)\)[/tex] is [tex]\(k = 3\)[/tex].