Question 5 (Multiple Choice Worth 3 Points)
(Federal Income Taxes and Piecewise Functions MC)
The piecewise function represents the amount of taxes owed, [tex]\(f(x)\)[/tex], as a function of the taxable income, [tex]\(x\)[/tex]. Use the marginal tax rate chart or the piecewise function [tex]\(f\)[/tex].
Marginal Tax Rate Chart:
\begin{tabular}{|l|l|}
\hline
Tax Bracket & Marginal Tax Rate \\
\hline
\[tex]$0 - \$[/tex]10,275 & 10\% \\
\hline
\[tex]$10,276 - \$[/tex]41,175 & 12\% \\
\hline
\[tex]$41,176 - \$[/tex]89,075 & 22\% \\
\hline
\[tex]$89,076 - \$[/tex]170,050 & 24\% \\
\hline
\[tex]$170,051 - \$[/tex]215,950 & 32\% \\
\hline
\[tex]$215,951 - \$[/tex]539,900 & 35\% \\
\hline
>\[tex]$539,901 & 37\% \\
\hline
\end{tabular}
\[
f(x) = \left\{
\begin{array}{ll}
0.10 x & 0 \leq x \leq 10,275 \\
0.12 x - 205.50 & 10,276 \leq x \leq 41,175 \\
0.22 x - 4,323.00 & 41,176 \leq x \leq 89,075 \\
0.24 x - 6,104.50 & 89,076 \leq x \leq 170,050 \\
0.32 x - 19,708.50 & 170,051 \leq x \leq 215,950 \\
0.35 x - 26,187.00 & 215,951 \leq x \leq 539,900 \\
0.37 x - 36,985.00 & x \geq 539,901
\end{array}
\right.
\]
Determine the effective tax rate for a taxable income of \(\$[/tex]63,425\). Round the final answer to the nearest hundredth.
A. 10\%
B. 14.67\%