Solve [tex]\left(\frac{1}{64}\right)^x + 15 \ \textless \ 271[/tex] for [tex]x[/tex].

A. [tex]x \ \textless \ \frac{4}{3}[/tex]
B. [tex]x \ \textgreater \ \frac{4}{3}[/tex]
C. [tex]x \ \textless \ -\frac{4}{3}[/tex]
D. [tex]x \ \textgreater \ -\frac{4}{3}[/tex]



Answer :

Let's solve the inequality [tex]\(\left( \frac{1}{64} \right)^x + 15 < 271\)[/tex] for [tex]\(x\)[/tex].

1. Start by isolating the exponential term:
[tex]\[ \left( \frac{1}{64} \right)^x + 15 < 271 \][/tex]
Subtract 15 from both sides:
[tex]\[ \left( \frac{1}{64} \right)^x < 256 \][/tex]

2. Knowing that [tex]\(\frac{1}{64} = 64^{-1}\)[/tex], we can rewrite the inequality:
[tex]\[ 64^{-x} < 256 \][/tex]

3. Express 256 as a power of 64. Since [tex]\( 256 = 4^4 \)[/tex] and [tex]\( 64 = 4^3 \)[/tex], we can write:
[tex]\[ 256 = 4^4 = (4^3)^{4/3} = 64^{4/3} \][/tex]

4. Substitute this back into the inequality:
[tex]\[ 64^{-x} < 64^{4/3} \][/tex]

5. Since the bases are the same, we can set the exponents to satisfy the inequality:
[tex]\[ -x < \frac{4}{3} \][/tex]

6. Multiply both sides by -1 and reverse the inequality sign:
[tex]\[ x > -\frac{4}{3} \][/tex]

Thus, the solution to the inequality [tex]\(\left( \frac{1}{64} \right)^x + 15 < 271\)[/tex] is:
[tex]\[ \boxed{x > -\frac{4}{3}} \][/tex]