Use a calculator to find the values of the inverse trigonometric functions. Round to the nearest degree.

[tex]\[
\begin{array}{l}
\sin^{-1}\left(\frac{2}{3}\right) = \\
\tan^{-1}(4) = \\
\cos^{-1}(0.1) =
\end{array}
\][/tex]



Answer :

Let's solve for the values of the inverse trigonometric functions step-by-step and round each to the nearest degree:

### Step 1: Calculate [tex]\( \sin^{-1}\left(\frac{2}{3}\right) \)[/tex]

To find the inverse sine of [tex]\(\frac{2}{3}\)[/tex], we use the inverse sine function (also known as arcsine).

The result is approximately:

[tex]\[ \sin^{-1}\left(\frac{2}{3}\right) \approx 41.81^\circ \][/tex]

Rounded to the nearest degree:

[tex]\[ \sin^{-1}\left(\frac{2}{3}\right) \approx 42^\circ \][/tex]

### Step 2: Calculate [tex]\( \tan^{-1}(4) \)[/tex]

To find the inverse tangent of 4, we use the inverse tangent function (also known as arctangent).

The result is approximately:

[tex]\[ \tan^{-1}(4) \approx 75.96^\circ \][/tex]

Rounded to the nearest degree:

[tex]\[ \tan^{-1}(4) \approx 76^\circ \][/tex]

### Step 3: Calculate [tex]\( \cos^{-1}(0.1) \)[/tex]

To find the inverse cosine of 0.1, we use the inverse cosine function (also known as arccosine).

The result is approximately:

[tex]\[ \cos^{-1}(0.1) \approx 84.26^\circ \][/tex]

Rounded to the nearest degree:

[tex]\[ \cos^{-1}(0.1) \approx 84^\circ \][/tex]

### Final Results

Summarizing, the values of the inverse trigonometric functions rounded to the nearest degree are:

[tex]\[ \begin{array}{l} \sin^{-1}\left(\frac{2}{3}\right) \approx 42^\circ \\ \tan^{-1}(4) \approx 76^\circ \\ \cos^{-1}(0.1) \approx 84^\circ \\ \end{array} \][/tex]