Complete the following proof by providing the statements and reasons. Be aware, you may not use all boxes in the table. (6 points)
Given: [tex]\(6a - 2 = 3(a + 1) + 1\)[/tex]
Prove: [tex]\(a = 2\)[/tex]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Statements} & \multicolumn{1}{c|}{Reasons} \\
\hline [tex]\(6a - 2 = 3(a + 1) + 1\)[/tex] & Given \\
\hline [tex]\(6a - 2 = 3a + 3 + 1\)[/tex] & Distributive property \\
\hline [tex]\(6a - 2 = 3a + 4\)[/tex] & Simplifying \\
\hline [tex]\(6a - 3a - 2 = 3a + 4 - 3a\)[/tex] & Subtracting [tex]\(3a\)[/tex] from both sides \\
\hline [tex]\(3a - 2 = 4\)[/tex] & Simplifying \\
\hline [tex]\(3a - 2 + 2 = 4 + 2\)[/tex] & Adding 2 to both sides \\
\hline [tex]\(3a = 6\)[/tex] & Simplifying \\
\hline [tex]\(a = \frac{6}{3}\)[/tex] & Dividing both sides by 3 \\
\hline [tex]\(a = 2\)[/tex] & Simplifying \\
\hline
\end{tabular}