Which of the following expressions represents the simplified version of the expression below?

[tex]\[
\left(5 x^3 y^2-3 x y+2\right)+\left(2 x^3 y^2-3 x^2 y^2+4 x y-7\right)
\][/tex]

A. [tex]\( 3 x^3 y^2 + 3 x^2 y^2 - 7 x y + 9 \)[/tex]

B. [tex]\( 7 x^3 y^2 - 3 x^2 y^2 + x y - 5 \)[/tex]

C. [tex]\( 7 x^3 y^2 - 6 x^2 y^2 + 4 x y - 5 \)[/tex]

D. [tex]\( 7 x^6 y^{\log} 2 x^4 y^4 - 5 \)[/tex]



Answer :

Let's simplify the given expression step by step.

First, let's write down the original expression:
[tex]\[ (5x^3 y^2 - 3xy + 2) + (2x^3 y^2 - 3x^2 y^2 + 4xy - 7) \][/tex]

Next, we will combine the like terms. Like terms are terms that have exactly the same variables raised to the same powers.

1. Combining [tex]\(x^3 y^2\)[/tex] terms:
[tex]\[ 5x^3 y^2 + 2x^3 y^2 = 7x^3 y^2 \][/tex]

2. Combining [tex]\(x^2 y^2\)[/tex] terms:
[tex]\[ 0x^2 y^2 + (-3x^2 y^2) = -3x^2 y^2 \][/tex]
Note: The first polynomial does not have an [tex]\(x^2 y^2\)[/tex] term, so we consider it as [tex]\(0 \cdot x^2 y^2\)[/tex].

3. Combining [tex]\(xy\)[/tex] terms:
[tex]\[ -3xy + 4xy = xy \][/tex]

4. Combining constant terms:
[tex]\[ 2 + (-7) = -5 \][/tex]

Putting all these together, the simplified expression is:
[tex]\[ 7x^3 y^2 - 3x^2 y^2 + xy - 5 \][/tex]

Given the options:
1. [tex]\(3 x^3 y^2 + 3 x^2 y^2 - 7 xy + 9\)[/tex]
2. [tex]\(7 x^3 y^2 - 3 x^2 y^2 + x y - 5\)[/tex]
3. [tex]\(7 x^3 y^2 - 6 x^2 y^2 + 4 x y - 5\)[/tex]
4. [tex]\(7 x^6 y^4 - 5\)[/tex]

The simplified expression matches with:

[tex]\[ 7 x^3 y^2 - 3 x^2 y^2 + x y - 5 \][/tex]

So the correct answer is:
[tex]\[ 7 x^3 y^2 - 3 x^2 y^2 + x y - 5 \][/tex]