Simplify:
[tex]\[ 2x + 6x^2 - 10 + 4x^2 - 3x + (-6) \][/tex]

A. [tex]\(10x^2 - x - 4\)[/tex]
B. [tex]\(10x^2 - x - 16\)[/tex]
C. [tex]\(2x^2 + 2x + 16\)[/tex]
D. [tex]\(9x^2 - 16\)[/tex]



Answer :

To simplify the given expression [tex]\[ 2x + 6x^2 - 10 + 4x^2 - 3x + (-6) \][/tex], we need to combine like terms. Here is the step-by-step solution:

1. Identify and group the like terms:
- Terms with [tex]\( x^2 \)[/tex]: [tex]\( 6x^2 \)[/tex], [tex]\( 4x^2 \)[/tex]
- Terms with [tex]\( x \)[/tex]: [tex]\( 2x \)[/tex], [tex]\( -3x \)[/tex]
- Constant terms: [tex]\( -10 \)[/tex], [tex]\( -6 \)[/tex]

2. Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\[ 6x^2 + 4x^2 = 10x^2 \][/tex]

3. Combine the [tex]\( x \)[/tex] terms:
[tex]\[ 2x - 3x = -x \][/tex]

4. Combine the constant terms:
[tex]\[ -10 + (-6) = -16 \][/tex]

5. Write the simplified expression:
[tex]\[ 10x^2 - x - 16 \][/tex]

So, the simplified expression is [tex]\( 10x^2 - x - 16 \)[/tex]. Among the given choices, the correct answer is:
[tex]\[ 10x^2 - x - 16 \][/tex]