Compare the Predicted Values to the Simulated Values.

\begin{tabular}{|r|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & \begin{tabular}{c}
Black Fur and \\
Black Eyes
\end{tabular} & \begin{tabular}{c}
Black Fur and \\
Red Eyes
\end{tabular} & \begin{tabular}{c}
White Fur and \\
Black Eyes
\end{tabular} & \begin{tabular}{c}
White Fur and \\
Red Eyes
\end{tabular} \\
\hline Predicted Fraction & [tex]$16 / 16$[/tex] & [tex]$0 / 16$[/tex] & [tex]$0 / 16$[/tex] & [tex]$0 / 16$[/tex] \\
\hline Predicted Percentage & [tex]$100 \%$[/tex] & [tex]$0 \%$[/tex] & [tex]$0 \%$[/tex] & [tex]$0 \%$[/tex] \\
\hline Simulated Fraction & 10 & 0 & 0 & 0 \\
\hline Simulated Percentage & [tex]$100 \%$[/tex] & [tex]$0 \%$[/tex] & [tex]$0 \%$[/tex] & [tex]$0 \%$[/tex] \\
\hline
\end{tabular}

The data confirm that black fur and black eyes are [tex]\(\square\)[/tex] because even though one of the parents was homozygous for both white fur and red eyes, [tex]\(\square\)[/tex] offspring had black fur and black eyes.



Answer :

Sure, let's compare the predicted values to the simulated values step-by-step.

### Data Table:
\begin{tabular}{|r|c|c|c|c|}
\cline{2-5}
\multicolumn{1}{c|}{} & \begin{tabular}{c}
Black Fur and \\
Black Eyes
\end{tabular} & \begin{tabular}{c}
Black Fur and \\
Red Eyes
\end{tabular} & \begin{tabular}{c}
White Fur and \\
Black Eyes
\end{tabular} & \begin{tabular}{c}
White Fur and \\
Red Eyes
\end{tabular} \\
\hline
Predicted Fraction & [tex]$16 / 16$[/tex] & [tex]$0 / 16$[/tex] & [tex]$0 / 16$[/tex] & [tex]$0 / 16$[/tex] \\
\hline
Predicted Percentage & [tex]$100\%$[/tex] & [tex]$0\%$[/tex] & [tex]$0\%$[/tex] & [tex]$0\%$[/tex] \\
\hline
Simulated Fraction & 10 & 0 & 0 & 0 \\
\hline
Simulated Percentage & [tex]$100\%$[/tex] & [tex]$0\%$[/tex] & [tex]$0\%$[/tex] & [tex]$0\%$[/tex] \\
\hline
\end{tabular}

### Explanation:
1. Predicted Values:
- Predicted Fraction for Black Fur and Black Eyes: [tex]\( \frac{16}{16} = 1.0 \)[/tex]
- Predicted Percentage for Black Fur and Black Eyes: [tex]\( 100\% \)[/tex]
- Predicted Fraction for Black Fur and Red Eyes: [tex]\( \frac{0}{16} = 0.0 \)[/tex]
- Predicted Percentage for Black Fur and Red Eyes: [tex]\( 0\% \)[/tex]
- Predicted Fraction for White Fur and Black Eyes: [tex]\( \frac{0}{16} = 0.0 \)[/tex]
- Predicted Percentage for White Fur and Black Eyes: [tex]\( 0\% \)[/tex]
- Predicted Fraction for White Fur and Red Eyes: [tex]\( \frac{0}{16} = 0.0 \)[/tex]
- Predicted Percentage for White Fur and Red Eyes: [tex]\( 0\% \)[/tex]

2. Simulated Values:
- Simulated Fraction for Black Fur and Black Eyes: [tex]\( 10 \)[/tex] out of [tex]\( 10 \)[/tex] (which effectively means [tex]\( 10 / 10 = 1.0 \)[/tex] in terms of fraction)
- Simulated Percentage for Black Fur and Black Eyes: [tex]\( 100\% \)[/tex]
- Simulated Fraction for Black Fur and Red Eyes: [tex]\( 0 \)[/tex] out of [tex]\( 10 \)[/tex] (which effectively means [tex]\( 0 / 10 = 0.0 \)[/tex])
- Simulated Percentage for Black Fur and Red Eyes: [tex]\( 0\% \)[/tex]
- Simulated Fraction for White Fur and Black Eyes: [tex]\( 0 \)[/tex] out of [tex]\( 10 \)[/tex] (which effectively means [tex]\( 0 / 10 = 0.0 \)[/tex])
- Simulated Percentage for White Fur and Black Eyes: [tex]\( 0\% \)[/tex]
- Simulated Fraction for White Fur and Red Eyes: [tex]\( 0 \)[/tex] out of [tex]\( 10 \)[/tex] (which effectively means [tex]\( 0 / 10 = 0.0 \)[/tex])
- Simulated Percentage for White Fur and Red Eyes: [tex]\( 0\% \)[/tex]

### Conclusion:
The predicted values match exactly with the simulated values. Both the predicted and the simulated data show that all offspring have black fur and black eyes, confirming the dominance of these traits.

Fill in the blanks in the given statement:

The data confirm that black fur and black eyes are dominant because even though one of the parents was homozygous for both white fur and red eyes, all offspring had black fur and black eyes.