Answer :
Answer:
Rs 1,650,000
Step-by-step explanation:
To determine the rent paid by the company for hiring the triangular side wall of the flyover for 3 months, we first need to calculate the area of the triangular wall. To do this, we can use Heron's formula:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Heron's Formula}}\\\\A=\sqrt{s(s-a)(s-b)(s-c)}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$A$ is the area of the triangle.}\\\phantom{ww}\bullet\;\textsf{$a, b$ and $c$ are the side lengths of the triangle.}\\\phantom{ww}\bullet\;\textsf{$s$ is half the perimeter.}\end{array}}[/tex]
Find the semi-perimeter (s) of the triangle by dividing the sum of the three sides by 2:
[tex]s=\dfrac{122+22+120}{2}=132[/tex]
Now, use Heron's formula to find the area of the triangle (A):
[tex]A=\sqrt{132(132-122)(132-22)(132-120)} \\\\ A=\sqrt{132(10)(110)(12)} \\\\ A=\sqrt{1742400} \\\\ A=1320\; \sf m^2[/tex]
Therefore, the area of the triangular side wall is 1,320 m².
The rent per square meter per year is given as Rs 5000.
To find the rent per square meter for 3 months, convert the yearly rent to a monthly rent and then multiply by 3:
[tex]\textsf{Rent of 1 m$^2$ area for 3 months}=\dfrac{\textsf{Rs}\; 5000}{12} \times 3 \\\\\\ \textsf{Rent of 1 m$^2$ area for 3 months}=\textsf{Rs}\; 1250[/tex]
Finally, multiply the area of the wall by the rent per square meter:
[tex]\textsf{Total rent for 3 months}=1320 \times 1250 \\\\ \textsf{Total rent for 3 months}=\textsf{Rs}\;1650000[/tex]
Therefore, the company paid a rent of Rs 1,650,000 for hiring one side of the triangular wall of the flyover for 3 months.