Complete the table.

\begin{tabular}{c|c|c}
Fraction & Percentage & Decimal \\
\hline
[tex]$\frac{4}{5}$[/tex] & [tex]$80 \%$[/tex] & 0.8 \\
[tex]$\frac{3}{4}$[/tex] & [tex]$75 \%$[/tex] & 0.75 \\
[tex]$\frac{1}{2}$[/tex] & [tex]$50 \%$[/tex] & 0.5 \\
[tex]$\frac{1}{3}$[/tex] & [tex]$33.3 \%$[/tex] & [tex]$0 . \dot{3}$[/tex] \\
\end{tabular}

Note: Please use the [tex]$\frac{}{}$[/tex] format to enter fractions (i.e., [tex]$\frac{1}{2}$[/tex] for [tex]\( \frac{1}{2} \)[/tex]).



Answer :

Sure, let's complete the table step-by-step using the given values and assumptions.

1. For the fraction [tex]\(\frac{4}{5}\)[/tex]:
- Percentage: To convert the fraction [tex]\(\frac{4}{5}\)[/tex] to a percentage, we multiply it by 100. Hence, [tex]\((\frac{4}{5} \times 100 = 80\%\)[/tex].
- Decimal: The decimal representation of [tex]\(\frac{4}{5}\)[/tex] is 0.8.

2. For the percentage [tex]\(75\%\)[/tex]:
- Fraction: To convert [tex]\(75\%\)[/tex] to a fraction, we divide it by 100 to get [tex]\(\frac{75}{100}\)[/tex]. Simplifying [tex]\(\frac{75}{100}\)[/tex] we get [tex]\(\frac{3}{4}\)[/tex].
- Decimal: The decimal representation of [tex]\(75\%\)[/tex] is 0.75.

3. For the percentage [tex]\(33.3\%\)[/tex]:
- Fraction: To convert [tex]\(33.3\%\)[/tex] to a fraction, we divide it by 100 to get [tex]\(\frac{33.3}{100}\)[/tex]. Approximating it as [tex]\(\frac{333}{1000}\)[/tex] we get [tex]\(\frac{333}{1000}\)[/tex] which simplifies to [tex]\(\frac{333}{1000}\)[/tex] (as it is already in simplest form).
- Decimal: The decimal representation of [tex]\(33.3\%\)[/tex] is 0.333...

Now, placing all these values into the table:

[tex]\[ \begin{tabular}{c|c|c} \text{Fraction} & \text{Percentage} & \text{Decimal} \\ \hline 4 / 5 & 80\% & 0.8 \\ 3 / 4 & 75\% & 0.75 \\ 1 / 2 & 50\% & 0.5 \\ 333 / 1000 & 33.3\% & 0.333 \end{tabular} \][/tex]