Certainly! Let's find the squares of the given numbers step-by-step.
1. First number: [tex]\(10.16^2\)[/tex]
The square of [tex]\(10.16\)[/tex] can be calculated as follows:
[tex]\[
10.16 \times 10.16 = 103.2256
\][/tex]
Therefore, [tex]\(10.16^2 = 103.2256\)[/tex].
2. Second number: [tex]\(11.20^2\)[/tex]
The square of [tex]\(11.20\)[/tex] can be calculated as follows:
[tex]\[
11.20 \times 11.20 = 125.44
\][/tex]
Therefore, [tex]\(11.20^2 = 125.44\)[/tex].
3. Third number: [tex]\(12.15^2\)[/tex]
The square of [tex]\(12.15\)[/tex] can be calculated as follows:
[tex]\[
12.15 \times 12.15 = 147.6225
\][/tex]
Therefore, [tex]\(12.15^2 = 147.6225\)[/tex].
Now we can fill in the table with the calculated values:
[tex]\[
\begin{tabular}{l|l|l}
& & \\
\hline
$10.16^2$ & $11.20^2$ & $12.15^2$ \\
103.2256 & 125.44 & 147.6225 \\
& & \\
\hline
\end{tabular}
\][/tex]
Thus, the answers are:
- [tex]\(10.16^2 = 103.2256\)[/tex]
- [tex]\(11.20^2 = 125.44\)[/tex]
- [tex]\(12.15^2 = 147.6225\)[/tex]