\begin{tabular}{l|l|l}
& & \\
\hline
[tex]$10.16^2$[/tex] & [tex]$11.20^2$[/tex] & [tex]$12.15^2$[/tex] \\
Ans. & Ans. & Ans. \\
& & \\
\hline
\end{tabular}



Answer :

Certainly! Let's find the squares of the given numbers step-by-step.

1. First number: [tex]\(10.16^2\)[/tex]

The square of [tex]\(10.16\)[/tex] can be calculated as follows:
[tex]\[ 10.16 \times 10.16 = 103.2256 \][/tex]
Therefore, [tex]\(10.16^2 = 103.2256\)[/tex].

2. Second number: [tex]\(11.20^2\)[/tex]

The square of [tex]\(11.20\)[/tex] can be calculated as follows:
[tex]\[ 11.20 \times 11.20 = 125.44 \][/tex]
Therefore, [tex]\(11.20^2 = 125.44\)[/tex].

3. Third number: [tex]\(12.15^2\)[/tex]

The square of [tex]\(12.15\)[/tex] can be calculated as follows:
[tex]\[ 12.15 \times 12.15 = 147.6225 \][/tex]
Therefore, [tex]\(12.15^2 = 147.6225\)[/tex].

Now we can fill in the table with the calculated values:

[tex]\[ \begin{tabular}{l|l|l} & & \\ \hline $10.16^2$ & $11.20^2$ & $12.15^2$ \\ 103.2256 & 125.44 & 147.6225 \\ & & \\ \hline \end{tabular} \][/tex]

Thus, the answers are:
- [tex]\(10.16^2 = 103.2256\)[/tex]
- [tex]\(11.20^2 = 125.44\)[/tex]
- [tex]\(12.15^2 = 147.6225\)[/tex]