Answer:
Step-by-step explanation:
[tex]\frac{cota+coseca-1}{cota-coseca+1} \\=\frac{cota+coseca-(cosec^2a-cot^2a)}{cota-coseca+1} \\=\frac{(cota+coseca)-(coseca+cota)(coseca-cota)}{cota-coseca+1} \\=\frac{(cota+coseca)[1-coseca+cota]}{(cota-coseca+1)} \\=cota+coseca\\=\frac{cosa}{sina} +\frac{1}{sina} \\=\frac{cosa+1}{sina}[/tex]