A gas cylinder contains exactly 1 mole of oxygen gas [tex]\(\left( O_2 \right)\)[/tex]. How many molecules of oxygen are in the cylinder?

A. [tex]\(4.01 \times 10^{22}\)[/tex] molecules
B. [tex]\(6.02 \times 10^{23}\)[/tex] molecules
C. [tex]\(9.03 \times 10^{24}\)[/tex] molecules
D. [tex]\(2.89 \times 10^{26}\)[/tex] molecules



Answer :

To determine the number of molecules in 1 mole of oxygen gas (O[tex]\(_2\)[/tex]), you will need to use Avogadro's number. Avogadro's number gives the number of molecules in one mole of any substance. The value of Avogadro's number is [tex]\(6.02 \times 10^{23}\)[/tex].

Here's the step-by-step solution:

1. Understand the concept of a mole:
- One mole of any substance contains exactly [tex]\(6.02 \times 10^{23}\)[/tex] entities (atoms, molecules, etc.), according to Avogadro's number.

2. Identify the given information:
- The gas cylinder contains exactly 1 mole of O[tex]\(_2\)[/tex].

3. Apply Avogadro's number:
- Since 1 mole of any substance contains [tex]\(6.02 \times 10^{23}\)[/tex] molecules, 1 mole of O[tex]\(_2\)[/tex] will also contain [tex]\(6.02 \times 10^{23}\)[/tex] molecules.

Thus, the number of molecules of oxygen gas in the cylinder is [tex]\(6.02 \times 10^{23}\)[/tex].

So the correct answer is:
[tex]\[ \boxed{6.02 \times 10^{23} \text{ molecules}} \][/tex]