Answer :

To calculate the indefinite integral of [tex]\((2x + 3)^{3/5}\)[/tex] with respect to [tex]\(x\)[/tex], we can use a substitution to simplify the integration process. Here are the steps:

1. Substitute: Let [tex]\(u = 2x + 3\)[/tex]. This substitution changes the variable of integration, making it easier to integrate the function. Then, we differentiate [tex]\(u\)[/tex] with respect to [tex]\(x\)[/tex]:

[tex]\[ du = 2 \, dx \quad \Rightarrow \quad \frac{du}{2} = dx \][/tex]

2. Rewriting the Integral: Replace the variables in the original integral:

[tex]\[ \int (2x + 3)^{3/5} \, dx = \int u^{3/5} \cdot \frac{du}{2} \][/tex]

3. Factor Out the Constant: Pull the constant [tex]\(\frac{1}{2}\)[/tex] out of the integral:

[tex]\[ = \frac{1}{2} \int u^{3/5} \, du \][/tex]

4. Integrate: Use the power rule for integration, which states [tex]\(\int u^n \, du = \frac{u^{n+1}}{n+1}\)[/tex], where [tex]\(n \neq -1\)[/tex]:

[tex]\[ \frac{1}{2} \int u^{3/5} \, du = \frac{1}{2} \cdot \frac{u^{(3/5)+1}}{(3/5) + 1} \][/tex]

Simplify the exponent [tex]\((3/5) + 1\)[/tex]:

[tex]\[ (3/5) + 1 = (3/5) + (5/5) = \frac{8}{5} \][/tex]

Therefore:

[tex]\[ \frac{1}{2} \cdot \frac{u^{8/5}}{8/5} = \frac{1}{2} \cdot \frac{5}{8} u^{8/5} = \frac{5}{16} u^{8/5} \][/tex]

5. Substitute Back: Replace [tex]\(u\)[/tex] with [tex]\(2x + 3\)[/tex]:

[tex]\[ = \frac{5}{16} (2x + 3)^{8/5} \][/tex]

Recall from our original context, to get our particular antiderivative result, we should confirm:

[tex]\[ \frac{5}{16}(2x+3)^{8/5} = 0.3125 (2x + 3)^{1.6} \][/tex]

6. Result: Therefore, the indefinite integral is:

[tex]\[ \int (2x + 3)^{3/5} \, dx = 0.3125 (2x + 3)^{1.6} + C \][/tex]

where [tex]\(C\)[/tex] is the constant of integration.

Other Questions