What is the average of the expressions [tex]2x + 5[/tex], [tex]5x - 6[/tex], and [tex]-4x + 2[/tex]?

A. [tex]x - \frac{1}{3}[/tex]
B. [tex]x + \frac{1}{4}[/tex]
C. [tex]x + \frac{1}{3}[/tex]
D. [tex]3x + 3[/tex]
E. [tex]3x - 3[/tex]



Answer :

To find the average of the expressions [tex]\(2x + 5\)[/tex], [tex]\(5x - 6\)[/tex], and [tex]\(-4x + 2\)[/tex], we need to follow these steps:

1. Sum the expressions:

- First expression: [tex]\(2x + 5\)[/tex]
- Second expression: [tex]\(5x - 6\)[/tex]
- Third expression: [tex]\(-4x + 2\)[/tex]

Sum of these expressions is:
[tex]\[ (2x + 5) + (5x - 6) + (-4x + 2) \][/tex]

2. Combine like terms:

Combine the [tex]\(x\)[/tex]-terms and the constant terms separately:

[tex]\[ (2x + 5x - 4x) + (5 - 6 + 2) \][/tex]

Simplifying these,

[tex]\[ (2x + 5x - 4x) = (3x) \][/tex]

[tex]\[ (5 - 6 + 2) = (1) \][/tex]

Therefore, the sum of the expressions is:
[tex]\[ 3x + 1 \][/tex]

3. Calculate the average:

To find the average, we divide the sum by the number of expressions, which is 3:

[tex]\[ \text{Average} = \frac{3x + 1}{3} \][/tex]

4. Simplify the average:

Divide both terms in the numerator by 3:

[tex]\[ \frac{3x}{3} + \frac{1}{3} = x + \frac{1}{3} \][/tex]

Thus, the average of the expressions [tex]\(2x + 5\)[/tex], [tex]\(5x - 6\)[/tex], and [tex]\(-4x + 2\)[/tex] is:
[tex]\[ x + \frac{1}{3} \][/tex]

The correct answer is [tex]\(\boxed{x + \frac{1}{3}}\)[/tex]. So the correct choice is:
C. [tex]\(x + \frac{1}{3}\)[/tex]