Answer :

Sure, let's evaluate the given expressions step by step.

### Part (a):
Evaluate [tex]\(\sqrt{45} \times \sqrt{20}\)[/tex]:

1. First, calculate the square root of 45:
[tex]\[ \sqrt{45} \approx 6.708203932499369 \][/tex]

2. Next, calculate the square root of 20:
[tex]\[ \sqrt{20} \approx 4.47213595499958 \][/tex]

3. Now, multiply the two square roots together:
[tex]\[ \sqrt{45} \times \sqrt{20} \approx 6.708203932499369 \times 4.47213595499958 \][/tex]

4. The result of the multiplication is:
[tex]\[ \sqrt{45} \times \sqrt{20} \approx 30.000000000000004 \][/tex]

So, the evaluation of [tex]\(\sqrt{45} \times \sqrt{20}\)[/tex] is approximately [tex]\(30.000000000000004\)[/tex].

### Part (b):
Evaluate [tex]\(\sqrt{147} \times \sqrt{243}\)[/tex]:

1. First, calculate the square root of 147:
[tex]\[ \sqrt{147} \approx 12.12435565298214 \][/tex]

2. Next, calculate the square root of 243:
[tex]\[ \sqrt{243} \approx 15.588457268119896 \][/tex]

3. Now, multiply the two square roots together:
[tex]\[ \sqrt{147} \times \sqrt{243} \approx 12.12435565298214 \times 15.588457268119896 \][/tex]

4. The result of the multiplication is:
[tex]\[ \sqrt{147} \times \sqrt{243} \approx 189.0 \][/tex]

So, the evaluation of [tex]\(\sqrt{147} \times \sqrt{243}\)[/tex] is approximately [tex]\(189.0\)[/tex].

Therefore, the final answers are:
1. [tex]\(\sqrt{45} \times \sqrt{20}\)[/tex] is approximately [tex]\(30.000000000000004\)[/tex].
2. [tex]\(\sqrt{147} \times \sqrt{243}\)[/tex] is approximately [tex]\(189.0\)[/tex].