Simplify by using the laws of indices:

[tex]\[ \left(3 x^3 y\right)^{-1} \times \left(6 x^5 y^7\right) \][/tex]



Answer :

To simplify the expression [tex]\(\left(3 x^3 y\right)^{-1} \times\left(6 x^5 y^7\right)\)[/tex], we will apply the laws of indices step by step. Here's the detailed process:

1. Express the given term separately:

[tex]\[ \left(3 x^3 y\right)^{-1} \times (6 x^5 y^7) \][/tex]

2. Apply the negative exponent rule:

The negative exponent means taking the reciprocal of the term. Hence, [tex]\(\left(3 x^3 y\right)^{-1}\)[/tex] becomes:

[tex]\[ \left(3 x^3 y\right)^{-1} = \frac{1}{3 x^3 y} \][/tex]

Now we have:

[tex]\[ \frac{1}{3 x^3 y} \times (6 x^5 y^7) \][/tex]

3. Combine the fractions:

[tex]\[ \frac{6 x^5 y^7}{3 x^3 y} \][/tex]

4. Simplify the constants:

Simplify [tex]\(\frac{6}{3}\)[/tex]:

[tex]\[ \frac{6}{3} = 2 \][/tex]

Now we have:

[tex]\[ 2 \times \frac{x^5 y^7}{x^3 y} \][/tex]

5. Apply the laws of exponents to the variables:

- For [tex]\(x\)[/tex], use the rule [tex]\(\frac{x^a}{x^b} = x^{a-b}\)[/tex]:

[tex]\[ \frac{x^5}{x^3} = x^{5-3} = x^2 \][/tex]

- For [tex]\(y\)[/tex], use the rule [tex]\(\frac{y^m}{y^n} = y^{m-n}\)[/tex]:

[tex]\[ \frac{y^7}{y} = y^{7-1} = y^6 \][/tex]

6. Combine the simplified terms:

[tex]\[ 2 \times x^2 \times y^6 \][/tex]

Thus, the simplified expression is:

[tex]\[ 2 x^2 y^6 \][/tex]