8) Dividir por la Regla de Ruffini los siguientes polinomios:

a) [tex]P(x) = 3x^3 + 2x^2 - x - 1 \quad Q(x) = x + 2[/tex]

b) [tex]P(x) = x^7 + x^5 - x^3 - x \quad Q(x) = x - 1[/tex]

c) [tex]P(x) = 64x^6 + 64 \quad Q(x) = x + 2[/tex]



Answer :

Claro, vamos a resolver cada una de las divisiones utilizando la Regla de Ruffini paso a paso.

### a) Dividir [tex]\( P(x) = 3x^3 + 2x^2 - x - 1 \)[/tex] por [tex]\( Q(x) = x + 2 \)[/tex]

#### Paso 1: Coeficientes del polinomio [tex]\( P(x) \)[/tex]
Los coeficientes del polinomio [tex]\( P(x) = 3x^3 + 2x^2 - x - 1 \)[/tex] son:
[tex]\[ [3, 2, -1, -1] \][/tex]

#### Paso 2: Valor del divisor
Dado que [tex]\( Q(x) = x + 2 \)[/tex], el valor a usar es la raíz opuesta de [tex]\( Q(x) \)[/tex], es decir, [tex]\( -2 \)[/tex].

#### Paso 3: Proceso de División
1. Bajamos el primer coeficiente:
[tex]\[ 3 \][/tex]

2. Multiplicamos el coeficiente bajado por la raíz y sumamos con el siguiente coeficiente:
[tex]\[ 3 \cdot (-2) + 2 = -6 + 2 = -4 \][/tex]

3. Repetimos el paso anterior con el resultado obtenido:
[tex]\[ -4 \cdot (-2) + (-1) = 8 - 1 = 7 \][/tex]

4. Continuamos para el siguiente coeficiente:
[tex]\[ 7 \cdot (-2) + (-1) = -14 - 1 = -15 \][/tex]

El resultado de la división:
[tex]\[ Q(x) = 3x^2 - 4x + 7 \][/tex] con resto [tex]\( -15 \)[/tex].

### b) Dividir [tex]\( P(x) = x^7 + x^5 - x^3 - x \)[/tex] por [tex]\( Q(x) = x - 1 \)[/tex]

#### Paso 1: Coeficientes del polinomio [tex]\( P(x) \)[/tex]
Los coeficientes del polinomio [tex]\( P(x) = x^7 + x^5 - x^3 - x \)[/tex] (considerando los términos faltantes con coeficiente cero):
[tex]\[ [1, 0, 1, 0, -1, 0, -1, 0] \][/tex]

#### Paso 2: Valor del divisor
Dado que [tex]\( Q(x) = x - 1 \)[/tex], el valor a usar es [tex]\( 1 \)[/tex].

#### Paso 3: Proceso de División
1. Bajamos el primer coeficiente:
[tex]\[ 1 \][/tex]

2. Multiplicamos el coeficiente bajado por la raíz y sumamos con el siguiente coeficiente:
[tex]\[ 1 \cdot 1 + 0 = 1 \][/tex]

3. Repetimos el paso anterior con el resultado obtenido:
[tex]\[ 1 \cdot 1 + 1 = 2 \][/tex]

4. Continuamos para los siguientes coeficientes:
[tex]\[ 2 \cdot 1 + 0 = 2 \][/tex]
[tex]\[ 2 \cdot 1 + (-1) = 1 \][/tex]
[tex]\[ 1 \cdot 1 + 0 = 1 \][/tex]
[tex]\[ 1 \cdot 1 + (-1) = 0 \][/tex]
[tex]\[ 0 \cdot 1 + 0 = 0 \][/tex]

El resultado de la división:
[tex]\[ Q(x) = x^6 + x^5 + 2x^4 + 2x^3 + x^2 + x \][/tex] con resto [tex]\( 0 \)[/tex].

### c) Dividir [tex]\( P(x) = 64x^6 + 64 \)[/tex] por [tex]\( Q(x) = x + 2 \)[/tex]

#### Paso 1: Coeficientes del polinomio [tex]\( P(x) \)[/tex]
Los coeficientes del polinomio [tex]\( P(x) = 64x^6 + 64 \)[/tex] (considerando los términos faltantes con coeficiente cero):
[tex]\[ [64, 0, 0, 0, 0, 0, 64] \][/tex]

#### Paso 2: Valor del divisor
Dado que [tex]\( Q(x) = x + 2 \)[/tex], el valor a usar es [tex]\( -2 \)[/tex].

#### Paso 3: Proceso de División
1. Bajamos el primer coeficiente:
[tex]\[ 64 \][/tex]

2. Multiplicamos el coeficiente bajado por la raíz y sumamos con el siguiente coeficiente:
[tex]\[ 64 \cdot (-2) + 0 = -128 \][/tex]

3. Repetimos el paso anterior con el resultado obtenido:
[tex]\[ -128 \cdot (-2) + 0 = 256 \][/tex]

4. Continuamos para los siguientes coeficientes:
[tex]\[ 256 \cdot (-2) + 0 = -512 \][/tex]
[tex]\[ -512 \cdot (-2) + 0 = 1024 \][/tex]
[tex]\[ 1024 \cdot (-2) + 0 = -2048 \][/tex]
[tex]\[ -2048 \cdot (-2) + 64 = 4160 \][/tex]

El resultado de la división:
[tex]\[ Q(x) = 64x^5 - 128x^4 + 256x^3 - 512x^2 + 1024x - 2048 \][/tex] con resto [tex]\( 4160 \)[/tex].