To find the electric potential [tex]\( V \)[/tex] given a charge [tex]\( q \)[/tex] and an electric potential energy [tex]\( U \)[/tex], we use the following formula:
[tex]\[ V = \frac{U}{q} \][/tex]
Let's substitute the given values into the formula:
- The charge [tex]\( q \)[/tex] is [tex]\( 7.2 \times 10^{-5} \)[/tex] coulombs.
- The electric potential energy [tex]\( U \)[/tex] is [tex]\( 1.08 \times 10^{-2} \)[/tex] joules.
Now, using the formula:
[tex]\[ V = \frac{1.08 \times 10^{-2} \text{ J}}{7.2 \times 10^{-5} \text{ C}} \][/tex]
Next, perform the division:
[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]
This calculation results in:
[tex]\[ V = 150.0 \text{ V} \][/tex]
To provide the answer to the nearest whole number, the electric potential [tex]\( V \)[/tex] is:
[tex]\[ V = 150 \text{ V} \][/tex]
Therefore, the electric potential, to the nearest whole number, is [tex]\( 150 \)[/tex] volts.