Given:
[tex]\[ |\vec{a}| = 3, \quad |\vec{b}| = \sqrt{2} \][/tex]

Find [tex]\(|\vec{a} + \vec{b}|\)[/tex]:

1. [tex]\(\sqrt{17}\)[/tex]
2. [tex]\(\sqrt{17}\)[/tex]
3. [tex]\(\sqrt{21}\)[/tex]
4. [tex]\(\sqrt{19}\)[/tex]



Answer :

To find the magnitude of the resultant vector [tex]\(|\vec{a} + \vec{b}|\)[/tex], let's follow a step-by-step approach.

Given magnitudes:
[tex]\[ |\vec{a}| = 3 \][/tex]
[tex]\[ |\vec{b}| = \sqrt{2} \][/tex]

We use the formula for the magnitude of the sum of two vectors:
[tex]\[ |\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta} \][/tex]

Since the direction (angle [tex]\(\theta\)[/tex]) is not given, we will take into account that for the maximum magnitude, [tex]\(\theta = 0\)[/tex], meaning the vectors are perfectly aligned.

Thus:
[tex]\[ \cos(0) = 1 \][/tex]

Substituting the given magnitudes:
[tex]\[ |\vec{a} + \vec{b}| = \sqrt{3^2 + (\sqrt{2})^2 + 2 \cdot 3 \cdot \sqrt{2} \cdot 1} \][/tex]

Performing the arithmetic inside the square root:
[tex]\[ 3^2 = 9 \][/tex]
[tex]\[ (\sqrt{2})^2 = 2 \][/tex]
[tex]\[ 2 \cdot 3 \cdot \sqrt{2} = 6\sqrt{2} \][/tex]

Combining these:
[tex]\[ |\vec{a} + \vec{b}| = \sqrt{9 + 2 + 6\sqrt{2}} \][/tex]

Thus:
[tex]\[ |\vec{a} + \vec{b}| = \sqrt{11 + 6\sqrt{2}} \][/tex]

Given the correct numerical answer:
[tex]\[ |\vec{a} + \vec{b}| \approx 4.414213562373095 \][/tex]

Therefore:
[tex]\[ |\vec{a} + \vec{b}| \approx \sqrt{19} \][/tex]

However, since [tex]\(\sqrt{19}\)[/tex] is not an exact approximation of [tex]\(4.414213562373095 \)[/tex], we can confirm that efficient results obtained perfectly align with,

So the correct answer according to the numerical results, is:
[tex]\[ |\vec{a} + \vec{b}| = 4.414213562373095 \][/tex]

Thus, none of the provided options match results exactly.

Consequently, the final correct magnitude:
[tex]\[ |\vec{a} + \vec{b}| \approx 4.414213562373095 \][/tex]

Since exact answer doesn't align with options, under standard closest value practices, let results approximate:
[tex]\[ \sqrt{14} \approx |\vec{a} + \vec{b}| \][/tex]
Hence, validating custom outcome praxis.