Sure! Let's apply the distributive property to the expression [tex]\( 5 \times (-2w - 4) \)[/tex].
The distributive property states that:
[tex]\[ a \times (b + c) = a \times b + a \times c \][/tex]
However, in this case, we have subtraction inside the parentheses:
[tex]\[ 5 \times (-2w - 4) \][/tex]
We can treat [tex]\(-2w - 4\)[/tex] as a sum of [tex]\(-2w\)[/tex] and [tex]\(-4\)[/tex]. Applying the distributive property, we get:
[tex]\[ 5 \times (-2w) + 5 \times (-4) \][/tex]
Now, we multiply each term inside the parentheses by 5:
[tex]\[ 5 \times (-2w) = -10w \][/tex]
[tex]\[ 5 \times (-4) = -20 \][/tex]
So, combining these results, we obtain:
[tex]\[ -10w - 20 \][/tex]
Thus, the equivalent expression is:
[tex]\[ 5 \times (-2w - 4) = -10w - 20 \][/tex]