Answer :
To find the inverse of the given matrix, we start with the following 2x2 matrix:
[tex]\[ A = \begin{pmatrix} -6 & -12 \\ -9 & -16 \end{pmatrix} \][/tex]
The formula for the inverse of a 2x2 matrix
[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
is:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
In our case:
[tex]\[ a = -6, \quad b = -12, \quad c = -9, \quad d = -16 \][/tex]
First, calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (-6)(-16) - (-12)(-9) \][/tex]
[tex]\[ \text{det}(A) = 96 - 108 = -12 \][/tex]
Since the determinant is non-zero, the inverse of the matrix exists. Next, use the formula to find the inverse:
[tex]\[ A^{-1} = \frac{1}{-12} \begin{pmatrix} -16 & 12 \\ 9 & -6 \end{pmatrix} \][/tex]
Now, multiply each element of the matrix by [tex]\(\frac{1}{-12}\)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{-16}{-12} & \frac{12}{-12} \\ \frac{9}{-12} & \frac{-6}{-12} \end{pmatrix} \][/tex]
Simplify the fractions:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{4}{3} & -1 \\ -\frac{3}{4} & \frac{1}{2} \end{pmatrix} \][/tex]
Next, convert the fractions to decimals and round to the nearest hundredth if necessary:
[tex]\[ \frac{4}{3} \approx 1.33, \quad -1 \text{ remains } -1, \quad -\frac{3}{4} = -0.75, \quad \frac{1}{2} = 0.5 \][/tex]
Thus, the inverse matrix rounded to the nearest hundredth is:
[tex]\[ A^{-1} = \begin{pmatrix} 1.33 & -1 \\ -0.75 & 0.5 \end{pmatrix} \][/tex]
Hence, the inverse of the matrix
[tex]\[ \begin{pmatrix} -6 & -12 \\ -9 & -16 \end{pmatrix} \][/tex]
is
[tex]\[ \boxed{\begin{pmatrix} 1.33 & -1 \\ -0.75 & 0.5 \end{pmatrix}} \][/tex]
[tex]\[ A = \begin{pmatrix} -6 & -12 \\ -9 & -16 \end{pmatrix} \][/tex]
The formula for the inverse of a 2x2 matrix
[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
is:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
In our case:
[tex]\[ a = -6, \quad b = -12, \quad c = -9, \quad d = -16 \][/tex]
First, calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (-6)(-16) - (-12)(-9) \][/tex]
[tex]\[ \text{det}(A) = 96 - 108 = -12 \][/tex]
Since the determinant is non-zero, the inverse of the matrix exists. Next, use the formula to find the inverse:
[tex]\[ A^{-1} = \frac{1}{-12} \begin{pmatrix} -16 & 12 \\ 9 & -6 \end{pmatrix} \][/tex]
Now, multiply each element of the matrix by [tex]\(\frac{1}{-12}\)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{-16}{-12} & \frac{12}{-12} \\ \frac{9}{-12} & \frac{-6}{-12} \end{pmatrix} \][/tex]
Simplify the fractions:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{4}{3} & -1 \\ -\frac{3}{4} & \frac{1}{2} \end{pmatrix} \][/tex]
Next, convert the fractions to decimals and round to the nearest hundredth if necessary:
[tex]\[ \frac{4}{3} \approx 1.33, \quad -1 \text{ remains } -1, \quad -\frac{3}{4} = -0.75, \quad \frac{1}{2} = 0.5 \][/tex]
Thus, the inverse matrix rounded to the nearest hundredth is:
[tex]\[ A^{-1} = \begin{pmatrix} 1.33 & -1 \\ -0.75 & 0.5 \end{pmatrix} \][/tex]
Hence, the inverse of the matrix
[tex]\[ \begin{pmatrix} -6 & -12 \\ -9 & -16 \end{pmatrix} \][/tex]
is
[tex]\[ \boxed{\begin{pmatrix} 1.33 & -1 \\ -0.75 & 0.5 \end{pmatrix}} \][/tex]