Answer :
Solucionemos cada una de las ecuaciones cuadráticas de forma detallada utilizando la fórmula general [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
### 1. [tex]\( x^2 - 5x + 6 = 0 \)[/tex]
Dado que [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex] y [tex]\(c = 6\)[/tex]:
1. Calcular el discriminante:
[tex]\[ \Delta = b^2 - 4ac = (-5)^2 - 4(1)(6) = 25 - 24 = 1 \][/tex]
2. Calcular las raíces usando la fórmula general:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-5) \pm \sqrt{1}}{2 \cdot 1} = \frac{5 \pm 1}{2} \][/tex]
3. Encontrar las dos soluciones:
[tex]\[ x_1 = \frac{5 + 1}{2} = 3 \quad \text{y} \quad x_2 = \frac{5 - 1}{2} = 2 \][/tex]
### 2. [tex]\( x^2 - 2x + 1 = 0 \)[/tex]
Dado que [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex] y [tex]\(c = 1\)[/tex]:
1. Calcular el discriminante:
[tex]\[ \Delta = b^2 - 4ac = (-2)^2 - 4(1)(1) = 4 - 4 = 0 \][/tex]
2. Calcular las raíces usando la fórmula general:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-2) \pm \sqrt{0}}{2 \cdot 1} = \frac{2 \pm 0}{2} \][/tex]
3. Encontrar las dos soluciones (en este caso, ambas son iguales):
[tex]\[ x_1 = x_2 = \frac{2}{2} = 1 \][/tex]
### 3. [tex]\( x^2 + x - 6 = 0 \)[/tex]
Dado que [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex] y [tex]\(c = -6\)[/tex]:
1. Calcular el discriminante:
[tex]\[ \Delta = b^2 - 4ac = 1^2 - 4(1)(-6) = 1 + 24 = 25 \][/tex]
2. Calcular las raíces usando la fórmula general:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(1) \pm \sqrt{25}}{2 \cdot 1} = \frac{-1 \pm 5}{2} \][/tex]
3. Encontrar las dos soluciones:
[tex]\[ x_1 = \frac{-1 + 5}{2} = 2 \quad \text{y} \quad x_2 = \frac{-1 - 5}{2} = -3 \][/tex]
### Resumen:
- Las raíces de la ecuación cuadrática [tex]\( x^2 - 5x + 6 = 0 \)[/tex] son [tex]\( x_1 = 3 \)[/tex] y [tex]\( x_2 = 2 \)[/tex].
- La raíz de la ecuación cuadrática [tex]\( x^2 - 2x + 1 = 0 \)[/tex] es [tex]\( x_1 = x_2 = 1 \)[/tex].
- Las raíces de la ecuación cuadrática [tex]\( x^2 + x - 6 = 0 \)[/tex] son [tex]\( x_1 = 2 \)[/tex] y [tex]\( x_2 = -3 \)[/tex].
### 1. [tex]\( x^2 - 5x + 6 = 0 \)[/tex]
Dado que [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex] y [tex]\(c = 6\)[/tex]:
1. Calcular el discriminante:
[tex]\[ \Delta = b^2 - 4ac = (-5)^2 - 4(1)(6) = 25 - 24 = 1 \][/tex]
2. Calcular las raíces usando la fórmula general:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-5) \pm \sqrt{1}}{2 \cdot 1} = \frac{5 \pm 1}{2} \][/tex]
3. Encontrar las dos soluciones:
[tex]\[ x_1 = \frac{5 + 1}{2} = 3 \quad \text{y} \quad x_2 = \frac{5 - 1}{2} = 2 \][/tex]
### 2. [tex]\( x^2 - 2x + 1 = 0 \)[/tex]
Dado que [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex] y [tex]\(c = 1\)[/tex]:
1. Calcular el discriminante:
[tex]\[ \Delta = b^2 - 4ac = (-2)^2 - 4(1)(1) = 4 - 4 = 0 \][/tex]
2. Calcular las raíces usando la fórmula general:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-2) \pm \sqrt{0}}{2 \cdot 1} = \frac{2 \pm 0}{2} \][/tex]
3. Encontrar las dos soluciones (en este caso, ambas son iguales):
[tex]\[ x_1 = x_2 = \frac{2}{2} = 1 \][/tex]
### 3. [tex]\( x^2 + x - 6 = 0 \)[/tex]
Dado que [tex]\(a = 1\)[/tex], [tex]\(b = 1\)[/tex] y [tex]\(c = -6\)[/tex]:
1. Calcular el discriminante:
[tex]\[ \Delta = b^2 - 4ac = 1^2 - 4(1)(-6) = 1 + 24 = 25 \][/tex]
2. Calcular las raíces usando la fórmula general:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(1) \pm \sqrt{25}}{2 \cdot 1} = \frac{-1 \pm 5}{2} \][/tex]
3. Encontrar las dos soluciones:
[tex]\[ x_1 = \frac{-1 + 5}{2} = 2 \quad \text{y} \quad x_2 = \frac{-1 - 5}{2} = -3 \][/tex]
### Resumen:
- Las raíces de la ecuación cuadrática [tex]\( x^2 - 5x + 6 = 0 \)[/tex] son [tex]\( x_1 = 3 \)[/tex] y [tex]\( x_2 = 2 \)[/tex].
- La raíz de la ecuación cuadrática [tex]\( x^2 - 2x + 1 = 0 \)[/tex] es [tex]\( x_1 = x_2 = 1 \)[/tex].
- Las raíces de la ecuación cuadrática [tex]\( x^2 + x - 6 = 0 \)[/tex] son [tex]\( x_1 = 2 \)[/tex] y [tex]\( x_2 = -3 \)[/tex].