The table represents a function.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & -2 \\
\hline
-1 & 5 \\
\hline
3 & 4 \\
\hline
5 & -8 \\
\hline
\end{tabular}

What is [tex]$f(5)$[/tex]?

A. [tex]$-8$[/tex]
B. [tex]$-1$[/tex]
C. 1
D. 8



Answer :

To determine the value of [tex]\( f(5) \)[/tex], we need to refer to the provided table, which defines the values of the function [tex]\( f \)[/tex] for specific inputs [tex]\( x \)[/tex]. The table is as follows:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & -2 \\ \hline -1 & 5 \\ \hline 3 & 4 \\ \hline 5 & -8 \\ \hline \end{array} \][/tex]

From the table, we can see the following pairs [tex]\((x, f(x))\)[/tex]:

- When [tex]\( x = -4 \)[/tex], [tex]\( f(x) = -2 \)[/tex]
- When [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 5 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 4 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( f(x) = -8 \)[/tex]

To find [tex]\( f(5) \)[/tex], we look for the row where [tex]\( x = 5 \)[/tex]. According to the table:

[tex]\[ x = 5 \implies f(5) = -8 \][/tex]

Thus, the value of [tex]\( f(5) \)[/tex] is [tex]\(-8\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{-8} \][/tex]