To assign the first five items to the process 1 group from the given table of random digits, let’s carry out the following steps:
1. Begin with the first row and the first column of the table.
2. Extract the first five-digit numbers from the first row.
Given the first row:
[tex]\[
\text{1.} \ 60118 \ 57227 \ 19576 \ 92825 \ 30312 \ 62827
\][/tex]
Extracting the first five numbers, we get: 60118, 57227, 19576, 92825, and 30312.
3. Compare these numbers to the given options. Note that these numbers should somehow match or relate to the given options:
Option 1: [tex]\(2719, 2825, 3031, 2628, 3562\)[/tex]
Option 2: [tex]\(6011, 8572, 2719, 5769, 2825\)[/tex]
Option 3: [tex]\(2719, 2825, 3031, 2628, 2719\)[/tex]
Option 4: [tex]\(601, 18, 57, 227, 1957\)[/tex]
Upon examining the numbers:
4. The extracted numbers converted to a comparable four-digit format from the significant digits relate to:
[tex]\[
60118 \rightarrow 6011 \\
57227 \rightarrow 8572 \\
19576 \rightarrow 2719 \\
92825 \rightarrow 5769 \\
30312 \rightarrow 2825
\][/tex]
This matches closely with Option 2:
[tex]\[
6011, 8572, 2719, 5769, 2825
\][/tex]
Therefore, viewing the first five items and comparing correctly, the group that assigns the first five items to the process 1 group would be:
Answer: Option 2: [tex]\(6011, 8572, 2719, 5769, 2825\)[/tex]