The height of a triangle is 1 cm more than twice the base. If the area is 18 cm², find the base and height of the triangle.

Part 1 of 2:

Calculate the base of the triangle.



Answer :

To solve this problem, we need to follow a structured approach using algebra and the formula for the area of a triangle.

### Step-by-step solution:

1. Identify the given information:
- The area of the triangle is 18 cm².
- The height (h) is 1 cm more than twice the base (b).

2. Express the relationship mathematically:
- Let the base of the triangle be [tex]\( b \)[/tex] cm.
- The height of the triangle will be [tex]\( 2b + 1 \)[/tex] cm.

3. Use the area formula of a triangle:
The area of a triangle is given by:
[tex]\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Plugging in the known values:
[tex]\[ 18 = \frac{1}{2} \times b \times (2b + 1) \][/tex]

4. Remove the fraction by multiplying both sides by 2:
[tex]\[ 36 = b \times (2b + 1) \][/tex]

5. Form a quadratic equation:
[tex]\[ 36 = 2b^2 + b \][/tex]
Rearrange to standard quadratic form:
[tex]\[ 2b^2 + b - 36 = 0 \][/tex]

6. Solve the quadratic equation:
The quadratic equation [tex]\( 2b^2 + b - 36 = 0 \)[/tex] can be solved using the quadratic formula:
[tex]\[ b = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \][/tex]
Here, [tex]\( A = 2 \)[/tex], [tex]\( B = 1 \)[/tex], and [tex]\( C = -36 \)[/tex].

7. Calculate the discriminant:
[tex]\[ \text{Discriminant} = B^2 - 4AC = 1^2 - 4(2)(-36) = 1 + 288 = 289 \][/tex]

8. Find the roots:
[tex]\[ b = \frac{-1 \pm \sqrt{289}}{4} \][/tex]
[tex]\[ b = \frac{-1 \pm 17}{4} \][/tex]
This gives two solutions:
[tex]\[ b = \frac{16}{4} = 4 \quad \text{and} \quad b = \frac{-18}{4} = -4.5 \][/tex]

9. Determine the valid solution:
Since the base of a triangle cannot be negative, we discard [tex]\( b = -4.5 \)[/tex], leaving:
[tex]\[ b = 4 \][/tex]

10. Calculate the height:
Using the expression [tex]\( h = 2b + 1 \)[/tex]:
[tex]\[ h = 2(4) + 1 = 8 + 1 = 9 \][/tex]

### Final Answer:
The base of the triangle is 4 cm, and the height is 9 cm.