Select the correct answer.

What is the simplified form of this expression?

[tex]\[ (2x + 9) + (11x - 4) \][/tex]

A. [tex]\[ 13x + 13 \][/tex]
B. [tex]\[ 18x \][/tex]
C. [tex]\[ -9x + 5 \][/tex]
D. [tex]\[ 13x + 5 \][/tex]



Answer :

To simplify the given expression [tex]\((2x + 9) + (11x - 4)\)[/tex], we need to combine like terms step-by-step. Here’s the detailed process:

1. Identify the like terms:
- The terms involving [tex]\(x\)[/tex] are [tex]\(2x\)[/tex] and [tex]\(11x\)[/tex].
- The constant terms are [tex]\(9\)[/tex] and [tex]\(-4\)[/tex].

2. Combine the coefficients of the [tex]\(x\)[/tex] terms:
- [tex]\(2x + 11x\)[/tex] simplifies to [tex]\( (2 + 11)x = 13x \)[/tex].

3. Combine the constant terms:
- [tex]\(9 - 4\)[/tex] simplifies to [tex]\( 5 \)[/tex].

So, after combining the like terms, the expression simplifies to:
[tex]\[ 13x + 5 \][/tex]

Therefore, the correct answer is:
A. [tex]\(13x + 13\)[/tex]