Simplify the following expression and classify the resulting polynomial.

[tex]\[ 4x(x+1) - (3x-8)(x+4) \][/tex]

A. Quadratic binomial
B. Quadratic monomial
C. Linear binomial
D. Quadratic trinomial



Answer :

To simplify the expression and classify the resulting polynomial, we start with the given expression:

[tex]\[ 4x(x+1) - (3x - 8)(x + 4) \][/tex]

### Step 1: Expand each term individually

First, expand [tex]\(4x(x + 1)\)[/tex]:

[tex]\[ 4x(x + 1) = 4x^2 + 4x \][/tex]

Next, expand [tex]\((3x - 8)(x + 4)\)[/tex]:

[tex]\[ (3x - 8)(x + 4) = 3x(x + 4) - 8(x + 4) \][/tex]

Expanding each part separately:
[tex]\[ 3x(x + 4) = 3x^2 + 12x \][/tex]
[tex]\[ -8(x + 4) = -8x - 32 \][/tex]

Combining the expanded terms of [tex]\((3x - 8)(x + 4)\)[/tex]:

[tex]\[ 3x^2 + 12x - 8x - 32 = 3x^2 + 4x - 32 \][/tex]

### Step 2: Combine all parts

Now we combine the expanded expressions:

[tex]\[ 4x^2 + 4x - (3x^2 + 4x - 32) \][/tex]

### Step 3: Distribute the subtraction

[tex]\[ 4x^2 + 4x - 3x^2 - 4x + 32 \][/tex]

### Step 4: Combine like terms

Combine the [tex]\(x^2\)[/tex] terms:

[tex]\[ 4x^2 - 3x^2 = x^2 \][/tex]

Combine the [tex]\(x\)[/tex] terms:

[tex]\[ 4x - 4x = 0 \][/tex]

And then add the constant term:

[tex]\[ x^2 + 32 \][/tex]

The simplified expression is:

[tex]\[ x^2 + 32 \][/tex]

### Step 5: Classify the polynomial

Let's classify the polynomial [tex]\(x^2 + 32\)[/tex]:

- The degree of the polynomial is 2 because the highest power of [tex]\(x\)[/tex] is [tex]\(x^2\)[/tex].
- There are two terms in this polynomial: [tex]\(x^2\)[/tex] and 32.

A polynomial of degree two with two terms is known as a quadratic binomial. Therefore, the simplified polynomial, [tex]\(x^2 + 32\)[/tex], is:

### Answer
A. quadratic binomial