Given [tex]f(x)=8x+9[/tex],

(a) Find [tex]f(x+h)[/tex] and simplify.
(b) Find [tex]\frac{f(x+h)-f(x)}{h}[/tex] and simplify.

Part: [tex]0 / 2[/tex]

Part 1 of 2

(a) [tex]f(x+h)= \square[/tex]



Answer :

Alright, let's solve part (a) step-by-step.

We are given the function [tex]\( f(x) = 8x + 9 \)[/tex].

We need to find [tex]\( f(x + h) \)[/tex] and simplify.

1. Substitute [tex]\( x + h \)[/tex] into the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(x + h) = 8(x + h) + 9 \][/tex]

2. Distribute [tex]\( 8 \)[/tex] inside the parentheses:

[tex]\[ f(x + h) = 8x + 8h + 9 \][/tex]

So, the simplified form of [tex]\( f(x + h) \)[/tex] is:

[tex]\[ f(x + h) = 8x + 8h + 9 \][/tex]