Answer :

Certainly! Let's solve the equation [tex]\(\frac{a+b}{a-b} - \frac{a-b}{a+b} = \frac{4ab}{a^2 - b^2}\)[/tex].

To begin, note that [tex]\(a^2 - b^2\)[/tex] can be factored as [tex]\((a+b)(a-b)\)[/tex]. We'll use this fact in our simplifications.

Here's the step-by-step solution:

1. Left-hand side manipulation:

Start with the left-hand side (LHS) of the equation:

[tex]\[ \frac{a+b}{a-b} - \frac{a-b}{a+b} \][/tex]

2. Common Denominator:

To subtract these fractions, we need a common denominator, which is [tex]\((a-b)(a+b)\)[/tex]:

[tex]\[ \frac{(a+b)^2}{(a-b)(a+b)} - \frac{(a-b)^2}{(a-b)(a+b)} \][/tex]

This combines as a single fraction:

[tex]\[ \frac{(a+b)^2 - (a-b)^2}{(a-b)(a+b)} \][/tex]

3. Expand the Numerator:

Next, expand the expressions in the numerator:

[tex]\[ (a+b)^2 = a^2 + 2ab + b^2 \][/tex]
[tex]\[ (a-b)^2 = a^2 - 2ab + b^2 \][/tex]

So,

[tex]\[ (a+b)^2 - (a-b)^2 = (a^2 + 2ab + b^2) - (a^2 - 2ab + b^2) \][/tex]

4. Simplify the Numerator:

Combine like terms:

[tex]\[ a^2 + 2ab + b^2 - a^2 + 2ab - b^2 = 4ab \][/tex]

The numerator simplifies to [tex]\(4ab\)[/tex].

5. LHS Simplified:

Now the left-hand side is:

[tex]\[ \frac{4ab}{(a-b)(a+b)} \][/tex]

6. Right-hand side:

The right-hand side (RHS) of the original equation is given as:

[tex]\[ \frac{4ab}{a^2 - b^2} \][/tex]

7. Recognize the RHS Denominator:

Notice that [tex]\(a^2 - b^2 = (a+b)(a-b)\)[/tex].

So, the right-hand side becomes:

[tex]\[ \frac{4ab}{(a+b)(a-b)} \][/tex]

8. Equality Verification:

Both LHS and RHS are now:

[tex]\[ \frac{4ab}{(a+b)(a-b)} \][/tex]

Since the forms are identical, we have shown that:

[tex]\[ \frac{a+b}{a-b} - \frac{a-b}{a+b} = \frac{4ab}{a^2 - b^2} \][/tex]

This equation holds true for all values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] where the denominators [tex]\((a-b)\)[/tex] and [tex]\((a+b)\)[/tex] are not zero, meaning [tex]\(a \neq b\)[/tex] and [tex]\(a \neq -b\)[/tex].