The following examples illustrate the associative property of multiplication.

[tex]\[
\begin{array}{l}
(5 \cdot 3) \cdot 6 = 5 \cdot (3 \cdot 6) \\
2 \cdot (1.1 \cdot 0.1) = (2 \cdot 1.1) \cdot 0.1
\end{array}
\][/tex]

Study the examples, then choose the statement that best describes the property.

A. [tex]\(a \cdot (b \cdot c) = (a \cdot b) \cdot c\)[/tex]

B. [tex]\(a \cdot b \cdot c = c \cdot a \cdot b\)[/tex]

C. [tex]\(b \cdot c \cdot a = (b \cdot c \cdot a)\)[/tex]

D. [tex]\((a \cdot b) \cdot c = a \cdot b\)[/tex]



Answer :

The examples provided illustrate the associative property of multiplication. The associative property states that when three or more numbers are multiplied, the way in which the numbers are grouped does not affect the product. Mathematically, this is represented as:

[tex]\[ a \cdot (b \cdot c) = (a \cdot b) \cdot c \][/tex]

To apply this property to the given examples:

1. [tex]\((5 \cdot 3) \cdot 6 = 5 \cdot (3 \cdot 6)\)[/tex]

This shows that the product remains the same regardless of how the numbers are grouped.

2. [tex]\(2 \cdot (1.1 \cdot 0.1) = (2 \cdot 1.1) \cdot 0.1\)[/tex]

This again demonstrates that changing the grouping does not change the product.

Among the given options, the statement that best describes the property is:

[tex]\[ a \cdot (b \cdot c) = (a \cdot b) \cdot c \][/tex]

This statement correctly captures the essence of the associative property of multiplication.