Certainly! Let's carefully evaluate the given mathematical expression step-by-step:
[tex]\[ 8^ 5\left(2(2(2+6) 1)^ 1^{ } 0\right.\][/tex]
1. Let's start with the innermost parentheses and simplify [tex]\(2 + 6\)[/tex]:
[tex]\[ 2 + 6 = 8 \][/tex]
2. Substitute 8 back into the expression:
[tex]\[ 2(2(8) 1)^ 1^{ } 0 \][/tex]
3. Next, let's process the expression [tex]\(2 \cdot 8\)[/tex]:
[tex]\[ 2 \cdot 8 = 16 \][/tex]
4. Now substitute 16 back into the expression:
[tex]\[ 2(16 1)^ 1^{ } 0 \][/tex]
5. Recognize that [tex]\(16 \cdot 1 = 16\)[/tex]:
[tex]\[ 16^ 1^{ *} 0\right.\][/tex]
6. Let’s consider any number raised to the power of 0, assuming appropriate exponents:
[tex]\[ 0.\][/tex]
So, given the problem, if any calculations involve raising a number to the power of zero or multiplying by zero within the problem, the final answer is:
[tex]\[ 0 \][/tex]
Therefore, the step-by-step solution to the given mathematical problem is:
[tex]\[ \boxed{0} \][/tex]