Evaluate the following expression:

[tex]\[ 8 \times 5 \left( 2 \left( 2 (2 + 6) \times 1 \right) \times 1 \times 0 \right) \][/tex]

Note: Ensure that the expression is correctly interpreted and the order of operations (PEMDAS/BODMAS) is followed.



Answer :

Certainly! Let's carefully evaluate the given mathematical expression step-by-step:

[tex]\[ 8^ 5\left(2(2(2+6) 1)^ 1^{ } 0\right.\][/tex]

1. Let's start with the innermost parentheses and simplify [tex]\(2 + 6\)[/tex]:
[tex]\[ 2 + 6 = 8 \][/tex]

2. Substitute 8 back into the expression:
[tex]\[ 2(2(8) 1)^ 1^{ } 0 \][/tex]

3. Next, let's process the expression [tex]\(2 \cdot 8\)[/tex]:
[tex]\[ 2 \cdot 8 = 16 \][/tex]

4. Now substitute 16 back into the expression:
[tex]\[ 2(16 1)^
1^{ } 0 \][/tex]

5. Recognize that [tex]\(16 \cdot 1 = 16\)[/tex]:
[tex]\[ 16^ 1^{ *} 0\right.\][/tex]

6. Let’s consider any number raised to the power of 0, assuming appropriate exponents:
[tex]\[ 0.\][/tex]

So, given the problem, if any calculations involve raising a number to the power of zero or multiplying by zero within the problem, the final answer is:

[tex]\[ 0 \][/tex]

Therefore, the step-by-step solution to the given mathematical problem is:
[tex]\[ \boxed{0} \][/tex]