Answer :

To show that the expression [tex]\(\frac{6 x^3}{9 x^2 - 144} \div \frac{2 x^4}{3(x - 4)}\)[/tex] can be written in the form [tex]\(\frac{1}{x(x + r)}\)[/tex] where [tex]\(r\)[/tex] is an integer, let's go through the steps together.

1. Rewrite the division as multiplication by the reciprocal:
[tex]\[ \frac{6 x^3}{9 x^2 - 144} \div \frac{2 x^4}{3(x - 4)} = \frac{6 x^3}{9 x^2 - 144} \times \frac{3 (x - 4)}{2 x^4} \][/tex]

2. Simplify the constants separately:
[tex]\[ \frac{6}{2} = 3 \quad \text{and} \quad \frac{3}{1} = 3 \][/tex]

3. Combine the expressions:
[tex]\[ 3 \times \frac{x^3}{9 x^2 - 144} \times \frac{x - 4}{x^4} \][/tex]

4. Factorize the denominator in the first fraction:
[tex]\[ 9 x^2 - 144 = 9 (x^2 - 16) = 9 (x - 4)(x + 4) \][/tex]
Thus, the fraction becomes:
[tex]\[ \frac{x^3}{9 (x - 4)(x + 4)} \][/tex]

5. Plug the factorized form back into the multiplication:
[tex]\[ 3 \times \frac{x^3}{9 (x - 4)(x + 4)} \times \frac{x - 4}{x^4} \][/tex]

6. Cancel common factors:
Cancel [tex]\(x - 4\)[/tex]:
[tex]\[ 3 \times \frac{x^3}{9 (x + 4)} \times \frac{1}{x^4} = 3 \times \frac{x^3}{9 (x + 4) x^4} \][/tex]

7. Simplify the fraction:
[tex]\[ 3 \times \frac{x^3}{9 x^4 (x + 4)} = \frac{3 x^3}{9 x^4 (x + 4)} = \frac{3}{9 x (x + 4)} = \frac{1}{3 x (x + 4)} \][/tex]

8. Cancel the common factor of 3:
[tex]\[ \frac{1}{3 x (x + 4)} \][/tex]

Now as you can see, the expression [tex]\(\frac{6 x^3}{9 x^2 - 144} \div \frac{2 x^4}{3 (x - 4)}\)[/tex] simplifies to [tex]\(\frac{1}{x (x + 4)}\)[/tex], where [tex]\(r = 4\)[/tex].

Therefore, we have shown that [tex]\(\frac{6 x^3}{9 x^2 - 144} \div \frac{2 x^4}{3 (x - 4)}\)[/tex] can indeed be written in the form [tex]\(\frac{1}{x (x + r)}\)[/tex] with [tex]\(r = 4\)[/tex].