Consider directed line segment [tex]$PQ$[/tex]. Point [tex]$P$[/tex] is located at [tex]$(-10, 3)$[/tex]. Point [tex]$R$[/tex], which is on segment [tex]$PQ$[/tex] and divides segment [tex]$PQ$[/tex] into a ratio of [tex]$PR: RQ = 2: 3$[/tex], is located at [tex]$(4, 7)$[/tex].

What are the coordinates of point [tex]$Q$[/tex]?

A. [tex]$(25, 13)$[/tex]
B. [tex]$(25, 22)$[/tex]
C. [tex]$(-5, 13)$[/tex]
D. [tex]$\left(-\frac{22}{5}, \frac{23}{5}\right)$[/tex]



Answer :

To determine the coordinates of point [tex]\( Q \)[/tex], we use the section formula which provides the coordinates of a point dividing a line segment in a given ratio.

Given:
- Coordinates of point [tex]\( P \)[/tex]: [tex]\( P(-10, 3) \)[/tex]
- Coordinates of point [tex]\( R \)[/tex]: [tex]\( R(4, 7) \)[/tex]
- The ratio [tex]\( P R : R Q = 2 : 3 \)[/tex]

We need to find the coordinates of point [tex]\( Q \)[/tex].

Using the section formula:
[tex]\[ R\left(\frac{m_1 \cdot x_2 + m_2 \cdot x_1}{m_1 + m_2}, \frac{m_1 \cdot y_2 + m_2 \cdot y_1}{m_1 + m_2}\right) \][/tex]

Here, [tex]\( R \)[/tex] divides [tex]\( P Q \)[/tex] in the ratio [tex]\( m_1 : m_2 \)[/tex]. For our problem, [tex]\( m_1 = 2 \)[/tex] and [tex]\( m_2 = 3 \)[/tex]:
[tex]\[ R_x = \frac{2 \cdot Q_x + 3 \cdot (-10)}{2 + 3} = 4 \][/tex]
[tex]\[ R_y = \frac{2 \cdot Q_y + 3 \cdot 3}{2 + 3} = 7 \][/tex]

Now, we need to solve for [tex]\( Q_x \)[/tex] and [tex]\( Q_y \)[/tex] from these equations.

Step 1: Solve for [tex]\( Q_x \)[/tex].
[tex]\[ \frac{2 \cdot Q_x + 3 \cdot (-10)}{5} = 4 \][/tex]
[tex]\[ 2 \cdot Q_x + 3 \cdot (-10) = 20 \][/tex]
[tex]\[ 2 \cdot Q_x - 30 = 20 \][/tex]
[tex]\[ 2 \cdot Q_x = 50 \][/tex]
[tex]\[ Q_x = \frac{50}{2} = 25 \][/tex]

Step 2: Solve for [tex]\( Q_y \)[/tex].
[tex]\[ \frac{2 \cdot Q_y + 3 \cdot 3}{5} = 7 \][/tex]
[tex]\[ 2 \cdot Q_y + 9 = 35 \][/tex]
[tex]\[ 2 \cdot Q_y = 26 \][/tex]
[tex]\[ Q_y = \frac{26}{2} = 13 \][/tex]

Therefore, the coordinates of point [tex]\( Q \)[/tex] are [tex]\( (25, 13) \)[/tex].

The correct answer is:
A. [tex]\( (25, 13) \)[/tex]