Answer :
Let's solve the integral [tex]\(\int x^3 \sqrt{1 + x^2} \, dx\)[/tex] step by step.
### Step 1: Identify the Integrand
We need to find the integral of the function [tex]\(x^3 \sqrt{1 + x^2}\)[/tex] with respect to [tex]\(x\)[/tex]:
[tex]\[ \int x^3 \sqrt{1 + x^2} \, dx \][/tex]
### Step 2: Determine the Integration Technique
To solve this integral, we can recognize that it might be easier to use a substitution method. We can try letting [tex]\( u = 1 + x^2 \)[/tex]. This substitution simplifies the square root part of the integrand.
### Step 3: Perform the Substitution
Let [tex]\( u = 1 + x^2 \)[/tex]. Then, differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ du = 2x \, dx \quad \Rightarrow \quad \frac{du}{2x} = dx \][/tex]
Also, notice that [tex]\( x^2 = u - 1 \)[/tex].
### Step 4: Rewrite the Integral
Substitute [tex]\( u = 1 + x^2 \)[/tex] and [tex]\( dx = \frac{du}{2x} \)[/tex] into the original integral:
[tex]\[ \int x^3 \sqrt{1 + x^2} \, dx = \int x^3 \sqrt{u} \left( \frac{du}{2x} \right) \][/tex]
Simplify inside the integral:
[tex]\[ = \int x^2 \cdot \frac{x}{2} \cdot \sqrt{u} \, du = \int \frac{x^2}{2} \cdot x \cdot \sqrt{u} \, du \][/tex]
Since [tex]\( x^2 = u - 1 \)[/tex]:
[tex]\[ = \int \frac{(u - 1)}{2} \cdot x \cdot \sqrt{u} \, du \][/tex]
Rewriting [tex]\( x \)[/tex] in terms of [tex]\( u \)[/tex] again [tex]\( ( x = \sqrt{u - 1}) \)[/tex]:
[tex]\[ = \int \frac{(u - 1)}{2} \cdot \sqrt{u - 1} \cdot \sqrt{u} \, du \][/tex]
### Step 5: Simplify and Integrate
Now simplify the expression:
[tex]\[ = \frac{1}{2} \int (u - 1) \sqrt{(u - 1) \cdot u} \, du \][/tex]
This integral can be split and further simplified. However, upon solving, we obtain the result as follows:
[tex]\[ x^4 \sqrt{x^2 + 1} / 5 + x^2 \sqrt{x^2 + 1} / 15 - 2\sqrt{x^2 + 1} / 15 + C \][/tex]
### Final Answer:
Thus, the integral evaluates to:
[tex]\[ \int x^3 \sqrt{1 + x^2} \, dx = \frac{x^4 \sqrt{x^2 + 1}}{5} + \frac{x^2 \sqrt{x^2 + 1}}{15} - \frac{2 \sqrt{x^2 + 1}}{15} + C \][/tex]
Here, [tex]\( C \)[/tex] is the constant of integration.
### Step 1: Identify the Integrand
We need to find the integral of the function [tex]\(x^3 \sqrt{1 + x^2}\)[/tex] with respect to [tex]\(x\)[/tex]:
[tex]\[ \int x^3 \sqrt{1 + x^2} \, dx \][/tex]
### Step 2: Determine the Integration Technique
To solve this integral, we can recognize that it might be easier to use a substitution method. We can try letting [tex]\( u = 1 + x^2 \)[/tex]. This substitution simplifies the square root part of the integrand.
### Step 3: Perform the Substitution
Let [tex]\( u = 1 + x^2 \)[/tex]. Then, differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ du = 2x \, dx \quad \Rightarrow \quad \frac{du}{2x} = dx \][/tex]
Also, notice that [tex]\( x^2 = u - 1 \)[/tex].
### Step 4: Rewrite the Integral
Substitute [tex]\( u = 1 + x^2 \)[/tex] and [tex]\( dx = \frac{du}{2x} \)[/tex] into the original integral:
[tex]\[ \int x^3 \sqrt{1 + x^2} \, dx = \int x^3 \sqrt{u} \left( \frac{du}{2x} \right) \][/tex]
Simplify inside the integral:
[tex]\[ = \int x^2 \cdot \frac{x}{2} \cdot \sqrt{u} \, du = \int \frac{x^2}{2} \cdot x \cdot \sqrt{u} \, du \][/tex]
Since [tex]\( x^2 = u - 1 \)[/tex]:
[tex]\[ = \int \frac{(u - 1)}{2} \cdot x \cdot \sqrt{u} \, du \][/tex]
Rewriting [tex]\( x \)[/tex] in terms of [tex]\( u \)[/tex] again [tex]\( ( x = \sqrt{u - 1}) \)[/tex]:
[tex]\[ = \int \frac{(u - 1)}{2} \cdot \sqrt{u - 1} \cdot \sqrt{u} \, du \][/tex]
### Step 5: Simplify and Integrate
Now simplify the expression:
[tex]\[ = \frac{1}{2} \int (u - 1) \sqrt{(u - 1) \cdot u} \, du \][/tex]
This integral can be split and further simplified. However, upon solving, we obtain the result as follows:
[tex]\[ x^4 \sqrt{x^2 + 1} / 5 + x^2 \sqrt{x^2 + 1} / 15 - 2\sqrt{x^2 + 1} / 15 + C \][/tex]
### Final Answer:
Thus, the integral evaluates to:
[tex]\[ \int x^3 \sqrt{1 + x^2} \, dx = \frac{x^4 \sqrt{x^2 + 1}}{5} + \frac{x^2 \sqrt{x^2 + 1}}{15} - \frac{2 \sqrt{x^2 + 1}}{15} + C \][/tex]
Here, [tex]\( C \)[/tex] is the constant of integration.