If [tex]$f(x) = x^2 + 1$[/tex] and [tex]$g(x) = x - 4$[/tex], which value is equivalent to [tex]$10(f \circ g)(10)$[/tex]?

A. 37
B. 97
C. 126
D. 606



Answer :

To solve the problem [tex]\(10(f \circ g)(10)\)[/tex] given the functions [tex]\(f(x) = x^2 + 1\)[/tex] and [tex]\(g(x) = x - 4\)[/tex]:

1. Calculate [tex]\(g(10)\)[/tex]:
[tex]\[ g(10) = 10 - 4 = 6 \][/tex]

2. Use the result from [tex]\(g(10)\)[/tex] to find [tex]\(f(g(10))\)[/tex]:
[tex]\[ f(g(10)) = f(6) \][/tex]
Now, substitute [tex]\(x\)[/tex] with 6 in the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(6) = 6^2 + 1 = 36 + 1 = 37 \][/tex]

3. Finally, multiply this result by 10:
[tex]\[ 10 \cdot f(g(10)) = 10 \cdot 37 = 370 \][/tex]

Thus, the value equivalent to [tex]\(10(f \circ g)(10)\)[/tex] is:

[tex]\[ \boxed{370} \][/tex]

However, none of the provided options (37, 97, 126, 606) include 370. This suggests an error in the options given. Following the correct calculations, [tex]\(370\)[/tex] is indeed the result for [tex]\(10(f \circ g)(10)\)[/tex].