The equation below shows the relationship between the temperature in degrees Celsius, [tex]C[/tex], and degrees Fahrenheit, [tex]F[/tex]:

[tex]\[C = \frac{5}{9}(F - 32)\][/tex]

Which of the following formulas correctly solves for [tex]F[/tex]?

A. [tex]F = \frac{9}{5} C + 32[/tex]

B. [tex]F = \frac{9}{5} C - 32[/tex]

C. [tex]F = 9 C + \frac{32}{5}[/tex]

D. [tex]F = 9 C - \frac{32}{5}[/tex]



Answer :

To solve for [tex]\( F \)[/tex] in the given relationship between the temperature in degrees Celsius ([tex]\( C \)[/tex]) and degrees Fahrenheit ([tex]\( F \)[/tex]), we need to isolate [tex]\( F \)[/tex] on one side of the equation. The equation provided is:

[tex]\[ C = \frac{5}{9} (F - 32) \][/tex]

Here are the steps to solve for [tex]\( F \)[/tex]:

1. Start with the given equation:
[tex]\[ C = \frac{5}{9} (F - 32) \][/tex]

2. To eliminate the fraction, multiply both sides of the equation by [tex]\( \frac{9}{5} \)[/tex]:
[tex]\[ \left( \frac{9}{5} \right) C = F - 32 \][/tex]

3. Now, add 32 to both sides of the equation to isolate [tex]\( F \)[/tex]:
[tex]\[ \left( \frac{9}{5} \right) C + 32 = F \][/tex]

Therefore, the correct formula that solves for [tex]\( F \)[/tex] is:

[tex]\[ F = \frac{9}{5} C + 32 \][/tex]

So, the correct answer is:

[tex]\[ O \quad F = \frac{9}{5} C + 32 \][/tex]

This matches the first choice given.