Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
b) [tex]-\sqrt{\frac{64}{25}}[/tex]
-----

Response:
b) [tex]-\sqrt{\frac{64}{25}}[/tex]



Answer :

Sure! To solve [tex]\( -\sqrt{\frac{64}{25}} \)[/tex], let's break it down into detailed steps:

1. Understand the Problem:
We need to simplify the expression [tex]\( -\sqrt{\frac{64}{25}} \)[/tex].

2. Calculate the Square Root of the Fraction:
First, find the square root of the fraction [tex]\(\frac{64}{25}\)[/tex].

[tex]\[ \sqrt{\frac{64}{25}} \][/tex]

3. Simplify the Fraction:
To simplify [tex]\(\sqrt{\frac{64}{25}}\)[/tex], we take the square root of the numerator and the denominator separately.

[tex]\[ \sqrt{\frac{64}{25}} = \frac{\sqrt{64}}{\sqrt{25}} \][/tex]

4. Calculate the Square Roots Individually:
- The square root of 64 is 8.
- The square root of 25 is 5.

So, we have:

[tex]\[ \frac{\sqrt{64}}{\sqrt{25}} = \frac{8}{5} \][/tex]

5. Simplify the Fraction:
Now, simplify [tex]\(\frac{8}{5}\)[/tex]:

[tex]\[ \frac{8}{5} = 1.6 \][/tex]

6. Apply the Negative Sign:
Finally, apply the negative sign in front of the square root:

[tex]\[ -\sqrt{\frac{64}{25}} = -1.6 \][/tex]

Therefore, the final result is:
[tex]\[ -\sqrt{\frac{64}{25}} = -1.6 \][/tex]

Intermediate and simplified results:
[tex]\[ \sqrt{\frac{64}{25}} = 1.6, \quad -\sqrt{\frac{64}{25}} = -1.6 \][/tex]