Evaluate the following formula for [tex]\(\bar{x}_1=28.4646, \bar{x}_2=25.1868, \mu_1-\mu_2=0, s_p=46.84, n_1=47\)[/tex], and [tex]\(n_2=48\)[/tex].

[tex]\[ t = \frac{\left(\bar{x}_1-\bar{x}_2\right)-\left(\mu_1-\mu_2\right)}{\sqrt{\frac{s_p^2}{n_1}+\frac{s_p^2}{n_2}}} \][/tex]

[tex]\[ t = \ \square \][/tex] (Round to two decimal places as needed.)



Answer :

Let's solve the given problem step-by-step.

The formula for the [tex]\( t \)[/tex]-value is:
[tex]\[ t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \][/tex]

Given values:
[tex]\[ \bar{x}_1 = 28.4646, \quad \bar{x}_2 = 25.1868, \quad \mu_1 - \mu_2 = 0, \quad s_p = 46.84, \quad n_1 = 47, \quad n_2 = 48 \][/tex]

### Step 1: Calculate the numerator of the [tex]\( t \)[/tex]-value formula

The numerator is:
[tex]\[ (\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2) \][/tex]

Plugging in the given values:
[tex]\[ (28.4646 - 25.1868) - 0 = 3.2778 \][/tex]

### Step 2: Calculate the denominator of the [tex]\( t \)[/tex]-value formula

The denominator is:
[tex]\[ \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \][/tex]

First, calculate [tex]\( s_p^2 \)[/tex]:
[tex]\[ s_p^2 = (46.84)^2 = 2194.5856 \][/tex]

Next, calculate the individual terms inside the square root:
[tex]\[ \frac{2194.5856}{47} \approx 46.6934 \][/tex]
[tex]\[ \frac{2194.5856}{48} \approx 45.7205 \][/tex]

Add these two values:
[tex]\[ 46.6934 + 45.7205 \approx 92.4139 \][/tex]

Now take the square root of the sum:
[tex]\[ \sqrt{92.4139} \approx 9.6119 \][/tex]

### Step 3: Calculate the [tex]\( t \)[/tex]-value

Combine the numerator and the denominator:
[tex]\[ t = \frac{3.2778}{9.6119} \approx 0.3411 \][/tex]

### Step 4: Round the [tex]\( t \)[/tex]-value to two decimal places

[tex]\[ t \approx 0.34 \][/tex]

So, the [tex]\( t \)[/tex]-value is:
[tex]\[ t = 0.34 \][/tex]