Rectangle SIUV is shown on a coordinate plane.

If rectangle STUV is translated using the rule [tex]\((x, y) \rightarrow (x-2, y-4)\)[/tex] and then rotated [tex]\(90^{\circ}\)[/tex] counterclockwise, what is the location of [tex]\(T'\)[/tex]?

A. [tex]\((3,-9)\)[/tex]
B. [tex]\((3,-4)\)[/tex]
C. [tex]\((-2,-4)\)[/tex]
D. [tex]\((-2,-9)\)[/tex]



Answer :

Let's follow the steps given to find the location of point [tex]\( T \)[/tex] following the transformations indicated.

1. Translation: Point [tex]\( T \)[/tex] starts at coordinates [tex]\( (3, -4) \)[/tex].

The translation rule given is [tex]\((x, y) \rightarrow(x-2, y-4)\)[/tex].

- Calculate the new [tex]\( x \)[/tex]-coordinate:
[tex]\[ x_{\text{translated}} = 3 - 2 = 1 \][/tex]

- Calculate the new [tex]\( y \)[/tex]-coordinate:
[tex]\[ y_{\text{translated}} = -4 - 4 = -8 \][/tex]

So, after the translation, point [tex]\( T \)[/tex] is at [tex]\((1, -8)\)[/tex].

2. Rotation: Next, we rotate the translated point [tex]\(90^{\circ}\)[/tex] counterclockwise.

The rule for rotating a point [tex]\(90^{\circ}\)[/tex] counterclockwise is [tex]\((x, y) \rightarrow(-y, x)\)[/tex].

- Apply this rule to the translated coordinates:
[tex]\[ x_{\text{rotated}} = -(-8) = 8 \][/tex]
[tex]\[ y_{\text{rotated}} = 1 \][/tex]

Therefore, after the rotation, the new coordinates of point [tex]\( T \)[/tex] are [tex]\((8, 1)\)[/tex].

Hence, the location of [tex]\( T \)[/tex] after applying the translation and rotation is [tex]\((8, 1)\)[/tex].

Given this information, none of the provided multiple-choice answers [tex]\((3, -9)\)[/tex], [tex]\((3, -4)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\((-2, -9)\)[/tex] are correct. The correct coordinates are [tex]\((8, 1)\)[/tex].