The function [tex]f(x)=5\left(\frac{1}{5}\right)^x[/tex] is reflected over the [tex]y[/tex]-axis. Which equations represent the reflected function? Select two options.

A. [tex]f(x)=\frac{1}{5}(5)^{-x}[/tex]
B. [tex]f(x)=\frac{1}{5} \frac{1}{5}\left(\frac{1}{5}\right)^x[/tex]
C. [tex]f(x)=5\left(\frac{1}{5}\right)^{-x}[/tex]
D. [tex]f(x)=5(5)^x[/tex]
E. [tex]f(x)=5(5)^{-x}[/tex]



Answer :

To determine the function that represents the reflection of [tex]\( f(x) = 5 \left( \frac{1}{5} \right)^x \)[/tex] over the [tex]\( y \)[/tex]-axis, we need to understand the transformation involved in this reflection. Reflecting a function over the [tex]\( y \)[/tex]-axis is accomplished by replacing [tex]\( x \)[/tex] with [tex]\( -x \)[/tex] in the function.

Let's start with the given function:

[tex]\[ f(x) = 5 \left( \frac{1}{5} \right)^x \][/tex]

Next, we reflect this function over the [tex]\( y \)[/tex]-axis by substituting [tex]\( -x \)[/tex] for [tex]\( x \)[/tex]:

[tex]\[ f(-x) = 5 \left( \frac{1}{5} \right)^{-x} \][/tex]

Now let's simplify [tex]\( 5 \left( \frac{1}{5} \right)^{-x} \)[/tex]:

Recall that [tex]\( \left( \frac{1}{5} \right)^{-x} \)[/tex] is equivalent to:

[tex]\[ \left( \frac{1}{5} \right)^{-x} = \left( \frac{1}{5} \right)^{-1 \cdot -x} = \left( 5 \right)^{x} \][/tex]

Therefore, the reflected function simplifies to:

[tex]\[ f(-x) = 5 \left( 5 \right)^{x} = 5 \left( 5 \right)^{-x} \][/tex]

We need to find which of the given options match this reflected form:

1. [tex]\( f(x) = \frac{1}{5}(5)^{-x} \)[/tex]
2. [tex]\( f(x) = \frac{1}{5} \frac{1}{5}\left(\frac{1}{5}\right)^x \)[/tex]
3. [tex]\( f(x) = 5\left(\frac{1}{5}\right)^{-x} \)[/tex]
4. [tex]\( f(x) = 5(5)^x \)[/tex]
5. [tex]\( f(x)=5(5)^{-x} \)[/tex]

Let's analyze each option one by one.

1. [tex]\( \frac{1}{5}(5)^{-x} \)[/tex]
- Simplifies to: [tex]\( \frac{1}{5} \times \frac{1}{(5^x)} = \frac{1}{5^{x+1}} \)[/tex]
- This does not match our reflected function.

2. [tex]\( \frac{1}{5} \frac{1}{5}\left(\frac{1}{5}\right)^x \)[/tex]
- Simplifies to: [tex]\( \left(\frac{1}{5}\right)^2 \times (5^x) = \frac{1}{25} \times 5^x \)[/tex]
- This does not match our reflected function.

3. [tex]\( 5\left(\frac{1}{5}\right)^{-x} \)[/tex]
- Simplifies to: [tex]\( 5 \times 5^x = 5^{x+1} \)[/tex]
- This does match our reflected function [tex]\( 5(5)^x \)[/tex].

4. [tex]\( 5(5)^x \)[/tex]
- This matches our reflected function [tex]\( 5(5)^x \)[/tex].

5. [tex]\( 5(5)^{-x} \)[/tex]
- This also matches our reflected function [tex]\( 5(5)^{-x} \)[/tex].

So, the two equations that represent the reflected function most appropriately are:

[tex]\[ f(x) = 5 \left( \frac{1}{5} \right)^{-x} \][/tex]
[tex]\[ f(x) = 5(5)^{-x} \][/tex]