Which are solutions of the equation [tex][tex]$4x^2 - 7x = 3x + 24$[/tex][/tex]? Check all that apply.

A. [tex][tex]$x = -4$[/tex][/tex]
B. [tex][tex]$x = -3$[/tex][/tex]
C. [tex][tex]$x = -\frac{3}{2}$[/tex][/tex]
D. [tex][tex]$x = \frac{2}{3}$[/tex][/tex]
E. [tex][tex]$x = 2$[/tex][/tex]
F. [tex][tex]$x = 4$[/tex][/tex]



Answer :

Let's solve the equation [tex]\(4x^2 - 7x = 3x + 24\)[/tex] step-by-step to find its solutions.

1. Start with the given equation:

[tex]\[ 4x^2 - 7x = 3x + 24 \][/tex]

2. Move all terms to one side to set the equation to 0:

[tex]\[ 4x^2 - 7x - 3x - 24 = 0 \][/tex]

Simplify the equation:

[tex]\[ 4x^2 - 10x - 24 = 0 \][/tex]

3. Use the quadratic formula to solve the simplified equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex]:

The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the coefficients are [tex]\(a = 4\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = -24\)[/tex].

4. Calculate the discriminant:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

So,

[tex]\[ \Delta = (-10)^2 - 4 \cdot 4 \cdot (-24) \][/tex]

[tex]\[ \Delta = 100 + 384 \][/tex]

[tex]\[ \Delta = 484 \][/tex]

5. Take the square root of the discriminant:

[tex]\[ \sqrt{484} = 22 \][/tex]

6. Plug the values into the quadratic formula:

[tex]\[ x = \frac{-(-10) \pm 22}{2 \cdot 4} \][/tex]

Simplify:

[tex]\[ x = \frac{10 \pm 22}{8} \][/tex]

7. Calculate the two possible solutions:

- For the positive root:

[tex]\[ x = \frac{10 + 22}{8} = \frac{32}{8} = 4 \][/tex]

- For the negative root:

[tex]\[ x = \frac{10 - 22}{8} = \frac{-12}{8} = -\frac{3}{2} \][/tex]

So, the solutions to the equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex] are:

[tex]\[ x = -\frac{3}{2} \quad \text{and} \quad x = 4 \][/tex]

8. Check which of the given options match these solutions:

- [tex]\( x = -4 \)[/tex] is not a solution.
- [tex]\( x = -3 \)[/tex] is not a solution.
- [tex]\( x = -\frac{3}{2} \)[/tex] is a solution.
- [tex]\( x = \frac{2}{3} \)[/tex] is not a solution.
- [tex]\( x = 2 \)[/tex] is not a solution.
- [tex]\( x = 4 \)[/tex] is a solution.

Therefore, the correct solutions are:

[tex]\[ x = -\frac{3}{2} \quad \text{and} \quad x = 4 \][/tex]