What is the approximate area of a circle with a diameter of 18 in?

A. [tex][tex]$1018 \, in^2$[/tex][/tex]

B. [tex][tex]$254 \, in^2$[/tex][/tex]

C. [tex][tex]$28.3 \, in^2$[/tex][/tex]

D. [tex][tex]$56.5 \, in^2$[/tex][/tex]



Answer :

To find the approximate area of a circle with a diameter of 18 inches, follow these steps:

1. Find the radius:
The radius ([tex]\( r \)[/tex]) is half of the diameter. Given the diameter is 18 inches:
[tex]\[ r = \frac{18}{2} = 9 \text{ inches} \][/tex]

2. Use the formula for the area of a circle:
The area [tex]\( A \)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
Plug in the radius:
[tex]\[ A \approx 3.14159 \times (9)^2 \][/tex]

3. Calculate the area:
[tex]\[ A \approx 3.14159 \times 81 \][/tex]
[tex]\[ A \approx 254.469 \][/tex]

4. Determine the closest option:
The options are:
- [tex]\( 1018 \, \text{in}^2 \)[/tex]
- [tex]\( 254 \, \text{in}^2 \)[/tex]
- [tex]\( 28.3 \, \text{in}^2 \)[/tex]
- [tex]\( 56.5 \, \text{in}^2 \)[/tex]

By comparing [tex]\( 254.469 \, \text{in}^2 \)[/tex] with the given options, the closest value is:
[tex]\[ 254 \, \text{in}^2 \][/tex]

Therefore, the approximate area of the circle is:
[tex]\[ \boxed{254 \, \text{in}^2} \][/tex]