Convert [tex]\( 20 \frac{\text{km}}{\text{h}} \)[/tex] to [tex]\(\frac{\text{m}}{\text{s}}\)[/tex].

[tex]\[
20 \frac{\text{km}}{\text{h}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} = \frac{20000 \text{ m}}{3600 \text{ s}} \approx 5.56 \frac{\text{m}}{\text{s}}
\][/tex]



Answer :

Converting a speed from kilometers per hour ([tex]\(\frac{km}{h}\)[/tex]) to meters per second ([tex]\(\frac{m}{s}\)[/tex]) involves two main steps: converting kilometers to meters and converting hours to seconds. Let's go through the process step-by-step.

1. Start with the given speed:
[tex]\[ 20 \frac{km}{h} \][/tex]

2. Convert kilometers to meters:

We know that 1 kilometer is equal to 1000 meters. Therefore:
[tex]\[ 20 \frac{km}{h} = 20 \times 1000 \frac{m}{h} = 20000 \frac{m}{h} \][/tex]

3. Convert hours to seconds:

We know that 1 hour is equal to 3600 seconds. So, we need to convert hours into seconds:
[tex]\[ 20 \frac{km}{h} = \frac{20000 \, meters}{1 \, hour} \][/tex]
Since 1 hour = 3600 seconds:
[tex]\[ 20 \frac{km}{h} = \frac{20000 \, meters}{3600 \, seconds} \][/tex]

4. Divide the number of meters by the number of seconds to get meters per second:
[tex]\[ \frac{20000}{3600} \frac{m}{s} \approx 5.555555555555555 \frac{m}{s} \][/tex]

Therefore, the speed of [tex]\( 20 \frac{km}{h} \)[/tex] is approximately [tex]\( 5.555555555555555 \frac{m}{s} \)[/tex].